yolov4-pytorch
yolov4-pytorch copied to clipboard
各位大佬!请问如果计算[email protected]:0.95呢?项目中get_map.py计算出来的是[email protected]吧?非常感谢
可不可以将get_map.py中的MINOVERLAP = 0.5, 分别修改从0.5到0.95(间隔0.05),计算10次后,求平均值
你可以这么做,我最新上传的yolox里面倒是有代码
你可以这么做,我最新上传的yolox里面倒是有代码
谢谢!
嗯
你可以这么做,我最新上传的yolox里面倒是有代码 请问大佬,输出的结果是这样的,该用那个指标计算MAP0.5-0.95呢?
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.438 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.666 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.084 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.294 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.494 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.397 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.502 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.182 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.529
可不可以将get_map.py中的MINOVERLAP = 0.5, 分别修改从0.5到0.95(间隔0.05),计算10次后,求平均值
请问大佬,输出的结果是这样的,该用那个指标计算MAP0.5-0.95呢?
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.438 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.666 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.084 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.294 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.494 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.397 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.502 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.182 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.529
请问大佬们,输出的结果是这样的,该用那个指标计算MAP0.5-0.95呢?
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.438 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.666 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.084 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.294 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.494 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.397 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.502 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.182 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.529