atari-rl
atari-rl copied to clipboard
Atari - Deep Reinforcement Learning algorithms in TensorFlow
trafficstars
Atari - Deep Reinforcement Learning algorithms in TensorFlow
Learning to play Atari in TensorFlow using Deep Reinforcement Learning
Setup
git clone https://github.com/brendanator/atari-rl
git submodule update --init
conda create --name atari-rl python=3.5
source activate atari-rl
conda install -y -c https://conda.binstar.org/menpo opencv3
conda install -y h5py numpy
pip install tensorflow
pip install 'gym[atari]'
Python 2.7 is also supported
Usage
- Show all options -
python main.py --help - Play a specific Atari game -
python main.py --game Breakout
Papers Implemented
- :white_check_mark: Human Level Control through Deep Reinforcement Learning
python main.py
- :white_check_mark: Deep Reinforcement Learning with Double Q-learning
python main.py --double_q
- :white_check_mark: Dueling Network Architectures for Deep Reinforcement Learning
python main.py --dueling
- :white_check_mark: Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening
python main.py --optimality_tightening
- :white_check_mark: Prioritized Experience Replay
python main.py --replay_prioritized- Only proportional prioritized replay is implemented
- :white_check_mark: Unifying Count-Based Exploration and Intrinsic Motivation
python main.py --exploration_bonus
- :white_check_mark: Deep Exploration via Bootstrapped DQN
python main.py --bootstrapped
- :white_check_mark: Increasing the Action Gap: New Operators for Reinforcement Learning
python main.py --persistent_advantage_learning
- :white_check_mark: Learning values across many orders of magnitudes
python main.py --reward_scaling
- :white_check_mark: Asynchronous Methods for Deep Reinforcement Learning
python main.py --async one_steppython main.py --async n_steppython main.py --async n_step --sarsapython main.py --async a3c
- :x: Deep Recurrent Q-Learning for Partially Observable MDPs
- :x: Safe and efficient Off-Policy Reinforcement Learning
- :x: Continuous Deep Q-Learning with Model-based Acceleration
Acknowledgements
- https://github.com/mgbellemare/SkipCTS - Used in implementation of Unifying Count-Based Exploration and Intrinsic Motivation
- https://github.com/Kaixhin/Atari
- https://github.com/carpedm20/deep-rl-tensorflow