mrcnn_serving_ready
                                
                                
                                
                                    mrcnn_serving_ready copied to clipboard
                            
                            
                            
                        🛠 Mask R-CNN Keras to Tensorflow and TFX models + Serving models using TFX GRPC & RESTAPI
MRCNN Model conversion
Script to convert MatterPort Mask_RCNN Keras model to Tensorflow Frozen Graph and Tensorflow Serving Model.
Plus inferencing with GRPC or RESTAPI using Tensorflow Model Server.
How to Run
- Modify the path variables in 'user_config.py'
 - Run main.py
python3 main.py 
For Custom Config class
If you have a different config class you can replace the existing config in 'main.py'
# main.py
# Current config load
config = get_config()
# replace it with your config class
config = your_custom_config_class
Inferencing
Follow once you finish converting it to a saved_model using the above code
Tensorflow Model Server with GRPC and RESTAPI
- First run your 
saved_model.pbin Tensorflow Model Server, using:tensorflow_model_server --port=8500 --rest_api_port=8501 --model_name=mask --model_base_path=/path/to/saved_model/ - Modify the variables and add your Config Class if needed in 
inferencing/saved_model_config.py. No need to change if the saved_model is the default COCO model. - Then run the 
inferencing/saved_model_inference.pywith the image path:# Set Python Path export PYTHONPATH=$PYTHONPATH:$pwd # Run Inference with GRPC python3 inferencing/saved_model_inference.py -t grpc -p test_image/monalisa.jpg # Run Inference with RESTAPI python3 inferencing/saved_model_inference.py -t restapi -p test_image/monalisa.jpg 
Acknowledgement
Thanks to @rahulgullan for RESTAPI client code.