amca
amca copied to clipboard
An RL-trained Backgammon agent
Amca
Status: Under construction.
Amca is an RL-based Backgammon_ agent.
Dependencies
+---------------------+-------------------+
| Dependency | Version Tested On |
+=====================+===================+
| Ubuntu_ | 16.04 |
+---------------------+-------------------+
| Python_ | 3.6.8 |
+---------------------+-------------------+
| numpy_ | 1.15.4 |
+---------------------+-------------------+
| gym_ | 0.10.9 |
+---------------------+-------------------+
| Stable Baselines_ | 2.4.0a |
+---------------------+-------------------+
About
This project aims to design Backgammon_ as a reinforcement learning problem,
and gauge the performance of common deep reinforcement learning algorithms. This
is done by training and gauging the performance of three popular and powerful RL
algorithms:
Deep Q Network (Mnih et. al)_Proximal Policy Optimization (Schulman et. al)_Soft Actor-Critic (Haarnoja et. al)_Sarsa (Rummery and Niranjan)_
The testing is done with the default parameters and implementations provided by
the Stable Baselines_ library for all the 3 deep RL algorithms. A custom implementation
heavily modified from this repo_ is used for SARSA, and the hyperparameters
are given in the SarsaAgent_ object.
Usage
- play.py: to launch a game against a deep RL trained model. For example,
python play.py ppo amca/models/amca.pklwill launch the model calledamca.pklthat was trained using the PPO algorithm. - train.py: to train an deep RL model (with default hyperparameters) to play. For example,
python train.py -n terminator.pkl -a sac -t 1000000will train an agent calledterminator.pklusing the SAC algorithm for 1000000 steps. - sarsa_play.py: to launch a game against a SARSA trained model.
python sarsa_play.py r2d2.pklwill launch the model calledr2d2.pklthat was trained using the SARSA algorithm. - sarsa_train.py: to train a model using SARSA. For example,
python sarsa_train.py jarvis.pkl -g 10000will train an agent calledjarvis.pklusing the SARSA algorithm for 10000 games.
License
GNU General Public License v3.0_
.. _Ubuntu: https://www.ubuntu.com/ .. _Python: https://www.python.org/ .. _numpy: https://www.numpy.org/ .. _gym: https://gym.openai.com/ .. _Stable Baselines: https://stable-baselines.readthedocs.io/ .. _Backgammon: https://en.wikipedia.org/wiki/Backgammon/ .. _Deep Q Network (Mnih et. al): https://arxiv.org/abs/1312.5602/ .. _Proximal Policy Optimization (Schulman et. al): https://arxiv.org/abs/1707.06347/ .. _Soft Actor-Critic (Haarnoja et. al): https://arxiv.org/abs/1812.05905/ .. _Sarsa (Rummery and Niranjan): ftp://mi.eng.cam.ac.uk/pub/reports/auto-pdf/rummery_tr166.pdf .. _GNU General Public License v3.0: /LICENSE .. _this repo: https://github.com/vmayoral/basic_reinforcement_learning/tree/master/tutorial2 .. _SarsaAgent: amca/agents/sarsa.py