tvm
tvm copied to clipboard
[Bug] Constant folding cannot process onnx model correctly: InternalError: Check failed: pb->value != 0 (0 vs. 0) : Divide by zero
Expected behavior
TVM should build the model correctly.
Actual behavior
Traceback (most recent call last):
File "/home/carla/Documents/test_tvm/0312/test_relax2.py", line 81, in <module>
ex = relax.build(tvm_model, target="llvm")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/vm_build.py", line 253, in build
mod = relax_pipeline(mod)
^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/ir/transform.py", line 238, in __call__
return _ffi_transform_api.RunPass(self, mod)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in tvm._ffi._cy3.core.PackedFuncBase.__call__
File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in tvm._ffi._cy3.core.FuncCall
File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in tvm._ffi._cy3.core.FuncCall3
File "tvm/_ffi/_cython/./base.pxi", line 185, in tvm._ffi._cy3.core.CHECK_CALL
File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in raise_last_ffi_error
raise py_err
File "tvm/_ffi/_cython/./packed_func.pxi", line 56, in tvm._ffi._cy3.core.tvm_callback
File "/home/carla/Documents/tvm/python/tvm/relax/pipeline.py", line 103, in _pipeline
mod = seq(mod)
^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/ir/transform.py", line 238, in __call__
return _ffi_transform_api.RunPass(self, mod)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in tvm._ffi._cy3.core.PackedFuncBase.__call__
File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in tvm._ffi._cy3.core.FuncCall
File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in tvm._ffi._cy3.core.FuncCall3
File "tvm/_ffi/_cython/./base.pxi", line 185, in tvm._ffi._cy3.core.CHECK_CALL
File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in raise_last_ffi_error
raise py_err
tvm.error.InternalError: Traceback (most recent call last):
40: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::transform::Pass, tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
39: tvm::transform::Pass::operator()(tvm::IRModule) const
38: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
37: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
36: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
35: tvm::relax::transform::FunctionPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
34: _ZN3tvm7runtime13PackedFuncObj
33: tvm::runtime::TypedPackedFunc<tvm::relax::Function (tvm::relax::Function, tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::relax::transform::RewriteDataflowReshape()::{lambda(tvm::relax::Function, tvm::IRModule, tvm::transform::PassContext)#1}>(tvm::relax::transform::RewriteDataflowReshape()::{lambda(tvm::relax::Function, tvm::IRModule, tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const
32: tvm::relax::RewriteDataflowReshape(tvm::relax::Function const&, tvm::IRModule const&)
31: tvm::relax::ExprMutator::VisitExpr(tvm::RelaxExpr const&)
30: _ZZN3tvm5relax11ExprFunctorIFNS_9RelaxExprERKS2_EE10InitVTableEvENUlRKNS_7r
29: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::FunctionNode const*)
28: tvm::relax::ExprMutator::VisitWithNewScope(tvm::RelaxExpr const&, tvm::runtime::Optional<tvm::runtime::Array<tvm::relax::Var, void> >)
27: tvm::relax::ExprMutator::VisitExpr(tvm::RelaxExpr const&)
26: _ZZN3tvm5relax11ExprFunctorIFNS_9RelaxExprERKS2_EE10InitVTableEvENUlRKNS_7r
25: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::SeqExprNode const*)
24: tvm::relax::DataflowReshapeRewriter::VisitBindingBlock(tvm::relax::BindingBlock const&)
23: tvm::relax::ExprMutator::VisitBindingBlock_(tvm::relax::DataflowBlockNode const*)
22: tvm::relax::ExprMutator::VisitBinding(tvm::relax::Binding const&)
21: tvm::relax::DataflowReshapeRewriter::VisitBinding_(tvm::relax::VarBindingNode const*)
20: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*)
19: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*, tvm::relax::TupleGetItemNode const*)
18: tvm::relax::ExprMutator::VisitExpr(tvm::RelaxExpr const&)
17: _ZZN3tvm5relax11ExprFunctorIFNS_9RelaxExprERKS2_EE10InitVTableEvENUlRKNS_7r
16: tvm::relax::DataflowReshapeRewriter::VisitExpr_(tvm::relax::CallNode const*)
15: tvm::relax::DataflowReshapeRewriter::IsCallingTIRReshape(tvm::relax::CallNode const*, tvm::RelaxExpr)
14: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)
13: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
12: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::BlockRealizeNode const*)
11: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
10: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::BlockNode const*)
9: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
8: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::ForNode const*)
7: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
6: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::ForNode const*)
5: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
4: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::BlockRealizeNode const*)
3: tvm::tir::StmtFunctor<void (tvm::tir::Stmt const&)>::VisitStmt(tvm::tir::Stmt const&)
2: tvm::relax::HasReshapePattern(tvm::tir::PrimFunc const&)::ReshapeDetector::VisitStmt_(tvm::tir::BlockNode const*)
1: tvm::floormod(tvm::PrimExpr, tvm::PrimExpr, tvm::Span)
0: tvm::runtime::Optional<tvm::PrimExpr> tvm::arith::TryConstFold<tvm::tir::FloorMod>(tvm::PrimExpr, tvm::PrimExpr)
File "/home/carla/Documents/tvm/src/arith/const_fold.h", line 321
InternalError: Check failed: pb->value != 0 (0 vs. 0) : Divide by zero
Environment
OS: Ubuntu 20.04 TVM: 0.20.dev0 (6e8c367)
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment. For the model, it can be correctly ran by onnxruntime. However, an InternalError occurs when TVM builds this model.
from typing import Dict, List, Literal, Optional
import sys
import numpy as np
import onnx
import onnxruntime
from onnx import ModelProto, TensorProto, helper, mapping
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import argparse
bg = np.random.MT19937(0)
rg = np.random.Generator(bg)
def generate_random_inputs(
model: ModelProto, inputs: Optional[Dict[str, np.ndarray]] = None
) -> Dict[str, np.ndarray]:
input_values = {}
# Iterate through model inputs and extract their shape.
for i in model.graph.input:
if inputs is not None and i.name in inputs and inputs[i.name] is not None:
input_values[i.name] = inputs[i.name]
continue
shape = []
for dim in i.type.tensor_type.shape.dim:
shape.append(dim.dim_value)
input_values[i.name] = generate_random_value(shape, i.type.tensor_type.elem_type)
return input_values
def generate_random_value(shape, elem_type) -> np.ndarray:
# Extract datatype for the input.
if elem_type:
dtype = str(helper.tensor_dtype_to_np_dtype(elem_type))
else:
dtype = "float32"
# Generate random inputs for each input.
if dtype == "bool":
# random_value = np.random.choice(a=[False, True], size=shape)
random_value = rg.choice(a=[False, True], size=shape)
elif dtype.startswith("int"):
# Keep non-zero values
random_value = rg.integers(low=-63, high=63, size=shape).astype(dtype)
random_value[random_value <= 0] -= 1
else:
random_value = rg.standard_normal(size=shape).astype(dtype)
return random_value
model_path = "model.onnx"
model = onnx.load(model_path)
inputs: Optional[Dict[str, np.ndarray]] = None
inputs = generate_random_inputs(model, inputs)
try:
ort_session = onnxruntime.InferenceSession(
model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except:
print("This model cannot be executed by onnxruntime!")
sys.exit(1)
print(ort_output)
tvm_model = from_onnx(model, keep_params_in_input=True)
tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
tvm_model = relax.transform.LegalizeOps()(tvm_model)
tvm_model, params = relax.frontend.detach_params(tvm_model)
with tvm.transform.PassContext(opt_level=0):
ex = relax.build(tvm_model, target="llvm")
vm = relax.VirtualMachine(ex, tvm.cpu())
- needs-triage
For relax.build() to work properly, it expects the model to be lowered to TensorIR before compilation.
Before calling relax.build(), add this transformation: tvm_model = relax.transform.LowerToTensorIR()(tvm_model)
It should work.
For relax.build() to work properly, it expects the model to be lowered to TensorIR before compilation.
Before calling relax.build(), add this transformation: tvm_model = relax.transform.LowerToTensorIR()(tvm_model)
It should work.
@Kushagra-88 Thanks for your reply! I have tried your method, but it gives the following output:
tvm_model = relax.transform.LowerToTensorIR()(tvm_model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: module 'tvm.relax.transform' has no attribute 'LowerToTensorIR'
I also try to search 'LowerToTensorIR' in the TVM repository on github. Unfortunately, LowerToTensorIR is not found in the current TVM repository. As stated in document, by using 'tvm_model = relax.transform.LegalizeOps()(tvm_model)' , the model should be lowered to TensorIR.
For relax.build() to work properly, it expects the model to be lowered to TensorIR before compilation. Before calling relax.build(), add this transformation: tvm_model = relax.transform.LowerToTensorIR()(tvm_model) It should work.
@Kushagra-88 Thanks for your reply! I have tried your method, but it gives the following output:
tvm_model = relax.transform.LowerToTensorIR()(tvm_model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'tvm.relax.transform' has no attribute 'LowerToTensorIR' I also try to search 'LowerToTensorIR' in the TVM repository on github. Unfortunately, LowerToTensorIR is not found in the current TVM repository. As stated in document, by using 'tvm_model = relax.transform.LegalizeOps()(tvm_model)' , the model should be lowered to TensorIR.
Did you try LegalizeOps()? Did it work?
For relax.build() to work properly, it expects the model to be lowered to TensorIR before compilation. Before calling relax.build(), add this transformation: tvm_model = relax.transform.LowerToTensorIR()(tvm_model) It should work.
@Kushagra-88 Thanks for your reply! I have tried your method, but it gives the following output: tvm_model = relax.transform.LowerToTensorIR()(tvm_model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'tvm.relax.transform' has no attribute 'LowerToTensorIR' I also try to search 'LowerToTensorIR' in the TVM repository on github. Unfortunately, LowerToTensorIR is not found in the current TVM repository. As stated in document, by using 'tvm_model = relax.transform.LegalizeOps()(tvm_model)' , the model should be lowered to TensorIR.
Did you try LegalizeOps()? Did it work?
No, the bug is still occurred after using LegalizeOps().