rknn_model_zoo
rknn_model_zoo copied to clipboard
简体中文 | English
RKNN Model Zoo
Description
RKNN Model Zoo is developed based on the RKNPU SDK toolchain and provides deployment examples for current mainstream algorithms. Include the process of exporting the RKNN model and using Python API and CAPI to infer the RKNN model.
- Support
RK3562,RK3566,RK3568,RK3588,RK3576platforms. - Limited support
RV1103,RV1106 - Support
RK1808,RV1109,RV1126platforms.
Dependency library installation
RKNN Model Zoo relies on RKNN-Toolkit2 for model conversion. The Android compilation tool chain is required when compiling the Android demo, and the Linux compilation tool chain is required when compiling the Linux demo. For the installation of these dependencies, please refer to the Quick Start documentation at https://github.com/airockchip/rknn-toolkit2/tree/master/doc.
- Please note that the Android compilation tool chain recommends using
version r18 or r19. Using other versions may encounter the problem of Cdemo compilation failure.
Model support
In addition to exporting the model from the corresponding respository, the models file are available on https://console.zbox.filez.com/l/8ufwtG (key: rknn).
| Demo |
Algorithm Category | Dtype support | Pretrain model |
|---|---|---|---|
| mobilenet | Classification | FP16/INT8 | mobilenetv2-12.onnx |
| resnet | Classification | FP16/INT8 | resnet50-v2-7.onnx |
| yolov5 | Object detection | FP16/INT8 | yolov5n.onnx yolov5s_relu.onnx yolov5s.onnx yolov5m.onnx |
| yolov6 | Object detection | FP16/INT8 | yolov6n.onnx yolov6s.onnx yolov6m.onnx |
| yolov7 | Object detection | FP16/INT8 | yolov7-tiny.onnx yolov7.onnx |
| yolov8 | Object detection | FP16/INT8 | yolov8n.onnx yolov8s.onnx yolov8m.onnx |
| yolox | Object detection | FP16/INT8 | yolox_s.onnx yolox_m.onnx |
| ppyoloe | Object detection | FP16/INT8 | ppyoloe_s.onnx ppyoloe_m.onnx |
| deeplabv3 | Image segmentation | FP16/INT8 | deeplab-v3-plus-mobilenet-v2.pb |
| yolov5-seg | Image segmentation | FP16/INT8 | yolov5n-seg.onnx yolov5s-seg.onnx yolov5m-seg.onnx |
| yolov8-seg | Image segmentation | FP16/INT8 | yolov8n-seg.onnx yolov8s-seg.onnx yolov8m-seg.onnx |
| ppseg | Image segmentation | FP16 | pp_liteseg_cityscapes.onnx |
| RetinaFace | Face key points | INT8 | RetinaFace_mobile320.onnx RetinaFace_resnet50_320.onnx |
| LPRNet | Car Plate Recognition | FP16/INT8 | lprnet.onnx |
| PPOCR-Det | Text detection | FP16/INT8 | ppocrv4_det.onnx |
| PPOCR-Rec | Text recognition | FP16 | ppocrv4_rec.onnx |
| lite_transformer | Neural Machine Translation | FP16 | lite-transformer-encoder-16.onnx lite-transformer-decoder-16.onnx |
Model performance benchmark(FPS)
| demo | model_name | inputs_shape | dtype | RK3566 RK3568 | RK3562 | RK3588 @single_core | RK3576 @single_core | RK3576 @single_core @sparse_weight |
RV1109 | RV1126 | RK1808 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| mobilenet | mobilenetv2-12 | [1, 3, 224, 224] | INT8 | 197.4 | 266.8 | 433.0 | 452.3 | 483.9 | 213.5 | 316.5 | 168.6 |
| resnet | resnet50-v2-7 | [1, 3, 224, 224] | INT8 | 40.6 | 54.5 | 108.6 | 97.4 | 129.9 | 24.5 | 36.4 | 37.0 |
| yolov5 | yolov5s_relu | [1, 3, 640, 640] | INT8 | 26.7 | 31.6 | 63.3 | 62.6 | 82.0 | 20.3 | 29.3 | 36.7 |
| yolov5n | [1, 3, 640, 640] | INT8 | 41.6 | 43.8 | 68.1 | 104.4 | 112.2 | 36.4 | 53.5 | 61.0 | |
| yolov5s | [1, 3, 640, 640] | INT8 | 19.9 | 22.7 | 42.5 | 54.2 | 65.5 | 13.7 | 20.1 | 28.1 | |
| yolov5m | [1, 3, 640, 640] | INT8 | 8.7 | 10.6 | 19.3 | 23.0 | 31.5 | 5.8 | 8.5 | 13.1 | |
| yolov6 | yolov6n | [1, 3, 640, 640] | INT8 | 50.2 | 51.5 | 93.8 | 98.6 | 136.6 | 37.7 | 56.8 | 66.4 |
| yolov6s | [1, 3, 640, 640] | INT8 | 15.2 | 16.8 | 34.1 | 33.1 | 55.3 | 10.9 | 16.4 | 24.0 | |
| yolov6m | [1, 3, 640, 640] | INT8 | 7.5 | 8.0 | 17.6 | 17.0 | 27.8 | 5.7 | 8.3 | 11.4 | |
| yolov7 | yolov7-tiny | [1, 3, 640, 640] | INT8 | 29.9 | 34.9 | 69.7 | 70.9 | 91.8 | 15.6 | 22.5 | 37.2 |
| yolov7 | [1, 3, 640, 640] | INT8 | 4.7 | 5.5 | 10.9 | 12.5 | 17.9 | 3.3 | 4.9 | 7.4 | |
| yolov8 | yolov8n | [1, 3, 640, 640] | INT8 | 35.7 | 38.5 | 59.6 | 79.5 | 95.6 | 24.1 | 36.0 | 41.9 |
| yolov8s | [1, 3, 640, 640] | INT8 | 15.4 | 17.1 | 32.8 | 38.7 | 52.4 | 9.0 | 13.2 | 19.1 | |
| yolov8m | [1, 3, 640, 640] | INT8 | 6.6 | 7.5 | 14.8 | 15.9 | 23.5 | 3.9 | 5.8 | 9.1 | |
| yolox | yolox_s | [1, 3, 640, 640] | INT8 | 15.5 | 17.7 | 32.9 | 36.4 | 46.7 | 10.6 | 15.7 | 22.9 |
| yolox_m | [1, 3, 640, 640] | INT8 | 6.7 | 8.1 | 14.8 | 16.5 | 23.2 | 4.7 | 6.8 | 10.5 | |
| ppyoloe | ppyoloe_s | [1, 3, 640, 640] | INT8 | 17.5 | 19.7 | 32.9 | 30.0 | 34.4 | 11.3 | 16.4 | 21.0 |
| ppyoloe_m | [1, 3, 640, 640] | INT8 | 7.9 | 8.3 | 16.2 | 12.9 | 14.8 | 5.2 | 7.7 | 9.4 | |
| deeplabv3 | deeplab-v3-plus-mobilenet-v2 | [1, 513, 513, 1] | INT8 | 10.7 | 20.7 | 34.4 | 38.1 | 42.5 | 10.3 | 13.1 | 4.4 |
| yolov5_seg | yolov5n-seg | [1, 3, 640, 640] | INT8 | 33.9 | 36.3 | 58.0 | 82.4 | 92.2 | 28.7 | 41.9 | 49.6 |
| yolov5s-seg | [1, 3, 640, 640] | INT8 | 15.3 | 17.2 | 32.6 | 39.5 | 51.1 | 9.7 | 14.0 | 22.4 | |
| yolov5m-seg | [1, 3, 640, 640] | INT8 | 6.8 | 8.1 | 15.2 | 17.2 | 25.1 | 4.7 | 6.9 | 10.7 | |
| yolov8_seg | yolov8n-seg | [1, 3, 640, 640] | INT8 | 29.1 | 30.7 | 49.1 | 64.5 | 78.0 | 18.6 | 27.8 | 32.7 |
| yolov8s-seg | [1, 3, 640, 640] | INT8 | 11.8 | 11.3 | 25.4 | 29.3 | 39.7 | 6.7 | 9.8 | 14.5 | |
| yolov8m-seg | [1, 3, 640, 640] | INT8 | 5.2 | 6.1 | 11.6 | 12.1 | 18.1 | 3.1 | 4.6 | 6.8 | |
| ppseg | ppseg_lite_1024x512 | [1, 3, 512, 512] | INT8 | 2.6 | 4.6 | 13.0 | 8.7 | 35.5 | 18.4 | 27.2 | 14.7 |
| RetinaFace | RetinaFace_mobile320 | [1, 3, 320, 320] | INT8 | 142.5 | 279.5 | 234.7 | 416.0 | 396.8 | 146.3 | 210.1 | 242.2 |
| RetinaFace_resnet50_320 | [1, 3, 320, 320] | INT8 | 18.5 | 26.0 | 48.8 | 47.3 | 70.4 | 14.7 | 20.9 | 24.2 | |
| LPRNet | lprnet | [1, 3, 24, 94] | INT8 | 58.2 | 119.7 | 204.4 | 130.2 | 130.6 | 30.6 | 47.8 | 30.1 |
| PPOCR-Det | ppocrv4_det | [1, 3, 480, 480] | INT8 | 24.4 | 27.5 | 43.0 | 46.1 | 47.0 | 11.1 | 16.2 | 9.1 |
| PPOCR-Rec | ppocrv4_rec | [1, 3, 48, 320] | FP16 | 20.0 | 45.1 | 35.7 | 55 | 58.9 | 1.0 | 1.6 | 6.7 |
| lite_transformer | lite-transformer-encoder-16 | embedding-256, token-16 | FP16 | 130.8 | 656.7 | 261.5 | 609.1 | 674.8 | 22.7 | 35.6 | 97.8 |
| lite-transformer-decoder-16 | embedding-256, token-16 | FP16 | 114.3 | 151.3 | 164.0 | 240 | 341.8 | 49.0 | 66.3 | 114.9 |
- This performance data are collected based on the maximum NPU frequency of each platform.
- This performance data calculate the time-consuming of model inference. Does not include the time-consuming of pre-processing and post-processing.
- RK3576 with sparse_weight referring to the performance when enabling the sparse weight for models
- Note: Models with sparse weight (via Kernel) should have improved performance, but may have accuracy drops depending on models.
Compile Demo
For Linux develop board:
./build-linux.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
-t : target (rk356x/rk3588/rk3576/rv1106/rk1808/rv1126)
-a : arch (aarch64/armhf)
-d : demo name
-b : build_type(Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
Note: 'rk356x' represents rk3562/rk3566/rk3568, 'rv1106' represents rv1103/rv1106, 'rv1126' represents rv1109/rv1126
# Here is an example for compiling yolov5 demo for 64-bit Linux RK3566.
./build-linux.sh -t rk356x -a aarch64 -d yolov5
For Android development board:
# For Android develop boards, it's require to set path for Android NDK compilation tool path according to the user environment
export ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b
./build-android.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
-t : target (rk356x/rk3588/rk3576)
-a : arch (arm64-v8a/armeabi-v7a)
-d : demo name
-b : build_type (Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
# Here is an example for compiling yolov5 demo for 64-bit Android RK3566.
./build-android.sh -t rk356x -a arm64-v8a -d yolov5
Release Notes
| Version | Description |
|---|---|
| 2.0.0 | Add new support for RK3576 for all demo.Full support for RK1808, RK1109, RK1126 platform. |
| 1.6.0 | New demo release, including object detection, image segmentation, OCR, car plate detection&recognition etc. Full support for RK3566, RK3568, RK3588, RK3562 platforms.Limited support for RV1103, RV1106 platforms. |
| 1.5.0 | Yolo detection demo release. |
Environment dependencies
All demos in RKNN Model Zoo are verified based on the latest RKNPU SDK. If using a lower version for verification, the inference performance and inference results may be wrong.
| Version | RKNPU2 SDK | RKNPU1 SDK |
|---|---|---|
| 2.0.0 | >=2.0.0 | >=1.7.5 |
| 1.6.0 | >=1.6.0 | - |
| 1.5.0 | >=1.5.0 | >=1.7.3 |
RKNPU Resource
- RKNPU2 SDK: https://github.com/airockchip/rknn-toolkit2
- RKNPU1 SDK: https://github.com/airockchip/rknn-toolkit
License
Apache License 2.0