llama-cpp-python icon indicating copy to clipboard operation
llama-cpp-python copied to clipboard

Feat: Support Ranking Method

Open yutyan0119 opened this issue 1 year ago • 4 comments

Description

Hello @abetlen! Thank you for your work on this library. This PR introduces a new rank method in the Llama class, enabling users to rank documents based on their relevance to a given query. This functionality is useful for tasks such as document retrieval and relevance scoring within a list of documents. This addition corresponds to the feature introduced in llama.cpp PR #9510 and also addresses the request for re-ranking support mentioned in Issue #1794.

Changes Made:

1. New Method: rank

  • Added the rank method, which accepts a query string and a list of document strings.
  • Each document is embedded with the query using the embed method.
  • Returns a list of rank scores, representing the relevance of each document to the query.

2. Embed Method Enhancement

  • Added a special_tokenize parameter to the embed method. When set to True, the method uses a special tokenization strategy, which supports query-document embeddings for ranking purposes.

Usage Example

import llama_cpp

llm = llama_cpp.Llama("jina-reranker-v1-tiny-en-f16.gguf", embedding=True, pooling_type=llama_cpp.LLAMA_POOLING_TYPE_RANK)

query = "what is panda?"
docs = [
    "pandas are bears", 
    "pandas are cute", 
    "pandas are black and white", 
    "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]

scores = llm.rank(query, docs)
print(scores)

output

llama_model_loader: loaded meta data with 32 key-value pairs and 70 tensors from jina-reranker-v1-tiny-en-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = jina-bert-v2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Jina Bert Implementation
llama_model_loader: - kv   3:                       general.organization str              = Jinaai
llama_model_loader: - kv   4:                         general.size_label str              = 33M
llama_model_loader: - kv   5:                            general.license str              = apache-2.0
llama_model_loader: - kv   6:                               general.tags arr[str,4]       = ["reranker", "cross-encoder", "transf...
llama_model_loader: - kv   7:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv   8:                   jina-bert-v2.block_count u32              = 4
llama_model_loader: - kv   9:                jina-bert-v2.context_length u32              = 8192
llama_model_loader: - kv  10:              jina-bert-v2.embedding_length u32              = 384
llama_model_loader: - kv  11:           jina-bert-v2.feed_forward_length u32              = 1536
llama_model_loader: - kv  12:          jina-bert-v2.attention.head_count u32              = 12
llama_model_loader: - kv  13:  jina-bert-v2.attention.layer_norm_epsilon f32              = 0.000000
llama_model_loader: - kv  14:                          general.file_type u32              = 1
llama_model_loader: - kv  15:              jina-bert-v2.attention.causal bool             = false
llama_model_loader: - kv  16:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  17:                         tokenizer.ggml.pre str              = jina-v1-en
llama_model_loader: - kv  18:                      tokenizer.ggml.tokens arr[str,61056]   = ["<s>", "<pad>", "</s>", "<unk>", "<m...
llama_model_loader: - kv  19:                  tokenizer.ggml.token_type arr[i32,61056]   = [3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  20:                      tokenizer.ggml.merges arr[str,39382]   = ["t h", "i n", "a n", "e r", "th e", ...
llama_model_loader: - kv  21:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  22:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  23:            tokenizer.ggml.unknown_token_id u32              = 3
llama_model_loader: - kv  24:          tokenizer.ggml.seperator_token_id u32              = 2
llama_model_loader: - kv  25:            tokenizer.ggml.padding_token_id u32              = 1
llama_model_loader: - kv  26:                tokenizer.ggml.cls_token_id u32              = 0
llama_model_loader: - kv  27:               tokenizer.ggml.mask_token_id u32              = 4
llama_model_loader: - kv  28:            tokenizer.ggml.token_type_count u32              = 2
llama_model_loader: - kv  29:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  30:               tokenizer.ggml.add_eos_token bool             = true
llama_model_loader: - kv  31:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   41 tensors
llama_model_loader: - type  f16:   29 tensors
llm_load_vocab: empty token at index 5
llm_load_vocab: model vocab missing newline token, using special_pad_id instead
llm_load_vocab: control token:      2 '</s>' is not marked as EOG
llm_load_vocab: control token:      4 '<mask>' is not marked as EOG
llm_load_vocab: control token:      1 '<pad>' is not marked as EOG
llm_load_vocab: control token:      0 '<s>' is not marked as EOG
llm_load_vocab: control token:      3 '<unk>' is not marked as EOG
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 5
llm_load_vocab: token to piece cache size = 1.5060 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = jina-bert-v2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 61056
llm_load_print_meta: n_merges         = 39382
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 8192
llm_load_print_meta: n_embd           = 384
llm_load_print_meta: n_layer          = 4
llm_load_print_meta: n_head           = 12
llm_load_print_meta: n_head_kv        = 12
llm_load_print_meta: n_rot            = 32
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 32
llm_load_print_meta: n_embd_head_v    = 32
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 384
llm_load_print_meta: n_embd_v_gqa     = 384
llm_load_print_meta: f_norm_eps       = 1.0e-12
llm_load_print_meta: f_norm_rms_eps   = 0.0e+00
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 8.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 1536
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 0
llm_load_print_meta: pooling type     = -1
llm_load_print_meta: rope type        = -1
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 8192
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 33M
llm_load_print_meta: model ftype      = F16
llm_load_print_meta: model params     = 32.90 M
llm_load_print_meta: model size       = 62.78 MiB (16.01 BPW) 
llm_load_print_meta: general.name     = Jina Bert Implementation
llm_load_print_meta: BOS token        = 0 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 3 '<unk>'
llm_load_print_meta: SEP token        = 2 '</s>'
llm_load_print_meta: PAD token        = 1 '<pad>'
llm_load_print_meta: CLS token        = 0 '<s>'
llm_load_print_meta: MASK token       = 4 '<mask>'
llm_load_print_meta: EOG token        = 2 '</s>'
llm_load_print_meta: max token length = 45
llm_load_tensors: CPU_Mapped model buffer size =    62.78 MiB
......................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =     3.00 MiB
llama_new_context_with_model: KV self size  =    3.00 MiB, K (f16):    1.50 MiB, V (f16):    1.50 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.00 MiB
llama_new_context_with_model:        CPU compute buffer size =    16.00 MiB
llama_new_context_with_model: graph nodes  = 154
llama_new_context_with_model: graph splits = 1
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 0 | AMX_INT8 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
Model metadata: {'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'true', 'tokenizer.ggml.token_type_count': '2', 'tokenizer.ggml.cls_token_id': '0', 'tokenizer.ggml.padding_token_id': '1', 'tokenizer.ggml.seperator_token_id': '2', 'tokenizer.ggml.unknown_token_id': '3', 'tokenizer.ggml.eos_token_id': '2', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'general.architecture': 'jina-bert-v2', 'tokenizer.ggml.pre': 'jina-v1-en', 'general.name': 'Jina Bert Implementation', 'jina-bert-v2.attention.causal': 'false', 'jina-bert-v2.block_count': '4', 'general.organization': 'Jinaai', 'general.type': 'model', 'general.size_label': '33M', 'general.license': 'apache-2.0', 'tokenizer.ggml.mask_token_id': '4', 'jina-bert-v2.context_length': '8192', 'jina-bert-v2.embedding_length': '384', 'tokenizer.ggml.bos_token_id': '0', 'jina-bert-v2.attention.head_count': '12', 'jina-bert-v2.feed_forward_length': '1536', 'general.file_type': '1', 'jina-bert-v2.attention.layer_norm_epsilon': '0.000000'}
Using fallback chat format: llama-2
llama_perf_context_print:        load time =      17.98 ms
llama_perf_context_print: prompt eval time =       0.00 ms /    78 tokens (    0.00 ms per token,      inf tokens per second)
llama_perf_context_print:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_perf_context_print:       total time =      18.03 ms /    79 tokens
[0.022738507017493248, 0.01924673095345497, 0.027259426191449165, 0.134610116481781]

yutyan0119 avatar Nov 03 '24 04:11 yutyan0119