Emotion-LLaMA icon indicating copy to clipboard operation
Emotion-LLaMA copied to clipboard

部署本地demo时遇到这个问题,是否和没有video文件夹有关?

Open 1547590574 opened this issue 9 months ago • 5 comments

/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/hub.py:4: FutureWarning: Importing from timm.models.hub is deprecated, please import via timm.models warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning) /home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/layers/init.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning) /home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/registry.py:4: FutureWarning: Importing from timm.models.registry is deprecated, please import via timm.models warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning) Initializing Chat model_config: {'arch': 'minigpt_v2', 'image_size': 448, 'drop_path_rate': 0, 'use_grad_checkpoint': False, 'vit_precision': 'fp16', 'freeze_vit': True, 'prompt': '', 'llama_model': '/home/marsdy/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf', 'lora_r': 64, 'lora_alpha': 16, 'model_type': 'pretrain', 'max_txt_len': 500, 'end_sym': '', 'low_resource': True, 'prompt_template': '[INST] {} [/INST]', 'ckpt': '/home/marsdy/Emotion-LLaMA/checkpoints/save_checkpoint/Emoation_LLaMA.pth'} The load_in_4bit and load_in_8bit arguments are deprecated and will be removed in the future versions. Please, pass a BitsAndBytesConfig object in quantization_config argument instead. Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:36<00:00, 18.29s/it] WARNING:py.warnings:/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/peft/utils/other.py:145: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead. warnings.warn(

loraconfig: LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type='CAUSAL_LM', inference_mode=False, r=64, target_modules={'v_proj', 'q_proj'}, lora_alpha=16, lora_dropout=0.05, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False) trainable params: 33,554,432 || all params: 6,771,970,048 || trainable%: 0.49548996469513035 Position interpolate from 16x16 to 32x32 Load Minigpt-4-LLM Checkpoint: /home/marsdy/Emotion-LLaMA/checkpoints/save_checkpoint/Emoation_LLaMA.pth Traceback (most recent call last): File "/home/marsdy/Emotion-LLaMA/app.py", line 61, in model = model_cls.from_config(model_config).to(device) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1145, in to return self._apply(convert) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 797, in _apply module._apply(fn) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 797, in _apply module._apply(fn) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 797, in _apply module._apply(fn) [Previous line repeated 2 more times] File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 820, in _apply param_applied = fn(param) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1143, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 18.00 MiB (GPU 0; 23.65 GiB total capacity; 8.30 GiB already allocated; 12.38 MiB free; 8.35 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF (llama) marsdy@GPU8:~/Emotion-LLaMA$ python app.py /home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/hub.py:4: FutureWarning: Importing from timm.models.hub is deprecated, please import via timm.models warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning) /home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/layers/init.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning) /home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/timm/models/registry.py:4: FutureWarning: Importing from timm.models.registry is deprecated, please import via timm.models warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning) Initializing Chat model_config: {'arch': 'minigpt_v2', 'image_size': 448, 'drop_path_rate': 0, 'use_grad_checkpoint': False, 'vit_precision': 'fp16', 'freeze_vit': True, 'prompt': '', 'llama_model': '/home/marsdy/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf', 'lora_r': 64, 'lora_alpha': 16, 'model_type': 'pretrain', 'max_txt_len': 500, 'end_sym': '', 'low_resource': True, 'prompt_template': '[INST] {} [/INST]', 'ckpt': '/home/marsdy/Emotion-LLaMA/checkpoints/save_checkpoint/Emoation_LLaMA.pth'} The load_in_4bit and load_in_8bit arguments are deprecated and will be removed in the future versions. Please, pass a BitsAndBytesConfig object in quantization_config argument instead. Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:25<00:00, 12.64s/it] WARNING:py.warnings:/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/peft/utils/other.py:145: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead. warnings.warn(

loraconfig: LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type='CAUSAL_LM', inference_mode=False, r=64, target_modules={'v_proj', 'q_proj'}, lora_alpha=16, lora_dropout=0.05, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False) trainable params: 33,554,432 || all params: 6,771,970,048 || trainable%: 0.49548996469513035 Position interpolate from 16x16 to 32x32 Load Minigpt-4-LLM Checkpoint: /home/marsdy/Emotion-LLaMA/checkpoints/save_checkpoint/Emoation_LLaMA.pth WARNING:py.warnings:/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/gradio/layouts/column.py:55: UserWarning: 'scale' value should be an integer. Using 0.5 will cause issues. warnings.warn(

Traceback (most recent call last): File "/home/marsdy/Emotion-LLaMA/app.py", line 635, in gr.Examples(examples=[ File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/gradio/helpers.py", line 61, in create_examples examples_obj = Examples( File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/site-packages/gradio/helpers.py", line 261, in init samples=copy.deepcopy(non_none_examples), File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 205, in _deepcopy_list append(deepcopy(a, memo)) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 205, in _deepcopy_list append(deepcopy(a, memo)) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 264, in _reconstruct y = func(*args) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 263, in args = (deepcopy(arg, memo) for arg in args) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 210, in _deepcopy_tuple y = [deepcopy(a, memo) for a in x] File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 210, in y = [deepcopy(a, memo) for a in x] File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 210, in _deepcopy_tuple y = [deepcopy(a, memo) for a in x] File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 210, in y = [deepcopy(a, memo) for a in x] File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 146, in deepcopy y = copier(x, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 230, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/home/marsdy/anaconda3/envs/llama/lib/python3.9/copy.py", line 161, in deepcopy rv = reductor(4) TypeError: cannot pickle 'Context' object

1547590574 avatar Feb 27 '25 07:02 1547590574

第一个问题是显存不够:torch.cuda.OutOfMemoryError: CUDA out of memory. 第二个问题是gradio版本不对,如果你的gradio版本高了,gr.Examples组件就会报错。建议使用gradio 3.47.1版本。

ZebangCheng avatar Feb 27 '25 10:02 ZebangCheng

(llama) [u202320085410023@gpu2 Emotion-LLaMA]$ python app.py

===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues

Initializing Chat model_config: {'arch': 'minigpt_v2', 'image_size': 448, 'drop_path_rate': 0, 'use_grad_checkpoint': False, 'vit_precision': 'fp16', 'freeze_vit': True, 'prompt': '', 'llama_model': '/hdd/u202320085410023/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf', 'lora_r': 64, 'lora_alpha': 16, 'model_type': 'pretrain', 'max_txt_len': 500, 'end_sym': '', 'low_resource': True, 'prompt_template': '[INST] {} [/INST]', 'ckpt': '/hdd/u202320085410023/Emotion-LLaMA/checkpoints/save_checkpoint/Emoation_LLaMA.pth'} Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████| 2/2 [00:13<00:00, 6.91s/it] loraconfig: LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, base_model_name_or_path=None, task_type='CAUSAL_LM', inference_mode=False, r=64, target_modules=['q_proj', 'v_proj'], lora_alpha=16, lora_dropout=0.05, merge_weights=False, fan_in_fan_out=False, enable_lora=None, bias='none', modules_to_save=None) trainable params: 33554432 || all params: 6771970048 || trainable%: 0.49548996469513035 54%|██████████████████████████████████████████████▌ | 1.02G/1.89G [02:00<01:25, 10.8MB/s] 您好,我在本地部署demo时总是遇到上面这种情况,没有报错,但是进度进行一部分就卡住不再进行了,过一段时间后还是如此。重新试了很多次,每次卡住的进度都不同,请问这是什么原因,怎么解决呢?

wangxinru1202 avatar Mar 01 '25 03:03 wangxinru1202

1.02G/1.89G [02:00<01:25, 10.8MB/s] 这一部分应该是从hugging face下载模型(BERT或者EVA视觉Encoder)卡住了。尝试使用hugging face镜像网站试试。

ZebangCheng avatar Mar 05 '25 03:03 ZebangCheng

第一个问题是显存不够:torch.cuda.OutOfMemoryError: CUDA out of memory. 第二个问题是gradio版本不对,如果你的gradio版本高了,gr.Examples组件就会报错。建议使用gradio 3.47.1版本。

我换成3.47.1版本会报如下错误:PermissionError: [Errno 13] Permission denied: '/tmp/gradio/bc589d81dda901fbca764ae4de637e1ae0ebdf08' IMPORTANT: You are using gradio version 3.47.1, however version 4.44.1 is available, please upgrade.

lucky-asia avatar Mar 07 '25 07:03 lucky-asia

抱歉,前段时间在忙,没有及时回复。

你这个问题和版本没有关系。IMPORTANT: You are using gradio version 3.47.1, however version 4.44.1 is available, please upgrade.这是警告,不是代码错误的核心原因。

真正的错误原因是PermissionError。因为demo需要提取视频中的audio,并将audio临时保持到本地,具体代码如下:

def extract_audio_from_video(video_path):
    video = VideoFileClip(video_path)
    audio = video.audio
    # audio.write_audiofile("audio.wav")

    audio_path = "audio.wav"
    audio.write_audiofile(audio_path, fps=16000, codec='pcm_s16le', ffmpeg_params=['-ac', '1'])
    samples, sr = sf.read(audio_path)
    return samples, sr

所以你需要基于代码或者用户写入的权限。

我在网络上检索后,发现以下链接,希望对你有帮助。

https://blog.csdn.net/wandererXX/article/details/136935596

ZebangCheng avatar Mar 18 '25 12:03 ZebangCheng