HashNet_PyTorch
                                
                                 HashNet_PyTorch copied to clipboard
                                
                                    HashNet_PyTorch copied to clipboard
                            
                            
                            
                        Source code for paper "HashNet: Deep Learning to Hash by Continuation" on ICCV-2017
HashNet: Deep Learning to Hash by Continuation
REQUIREMENTS
pip install -r requirements.txt
- pytorch >= 1.0
- loguru
DATASETS
- CIFAR-10 Password: aemd
- NUS-WIDE Password: msfv
- Imagenet100 Password: xpab
USAGE
usage: run.py [-h] [--dataset DATASET] [--root ROOT]
              [--code-length CODE_LENGTH] [--arch ARCH]
              [--batch-size BATCH_SIZE] [--lr LR] [--max-iter MAX_ITER]
              [--num-workers NUM_WORKERS] [--topk TOPK] [--gpu GPU]
              [--alpha ALPHA] [--seed SEED]
              [--evaluate-interval EVALUATE_INTERVAL]
HashNet_PyTorch
optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     Dataset name.
  --root ROOT           Path of dataset
  --code-length CODE_LENGTH
                        Binary hash code length.
  --arch ARCH           CNN model name.(default: alexnet)
  --batch-size BATCH_SIZE
                        Batch size.(default: 256)
  --lr LR               Learning rate.(default: 1e-5)
  --max-iter MAX_ITER   Number of iterations.(default: 300)
  --num-workers NUM_WORKERS
                        Number of loading data threads.(default: 6)
  --topk TOPK           Calculate map of top k.(default: all)
  --gpu GPU             Using gpu.(default: False)
  --alpha ALPHA         Hyper-parameter.(default: 1)
  --seed SEED           Random seed.(default: 3367)
  --evaluate-interval EVALUATE_INTERVAL
                        Evaluation interval.(default: 10)
EXPERIMENTS
CNN model: Alexnet.
cifar10: 1000 query images, 5000 training images, MAP@ALL.
nus-wide: Top 21 classes, 2100 query images, 10500 training images, MAP@5000.
imagenet100: Top 100 classes, 5000 query images, 10000 training images, MAP@1000.
| bits | 16 | 32 | 48 | 128 | 
|---|---|---|---|---|
| cifar10@ALL | 0.7290 | 0.7528 | 0.7512 | 0.7579 | 
| nus-wide-tc21@5000 | 0.7981 | 0.8200 | 0.8300 | 0.8424 | 
| imagenet100@1000 | 0.3651 | 0.4629 | 0.5094 | 0.5787 |