YOLOv3v4-ModelCompression-MultidatasetTraining-Multibackbone
YOLOv3v4-ModelCompression-MultidatasetTraining-Multibackbone copied to clipboard
mat1 dim 1 must match mat2 dim 0
while trying to prune after sparse training:
sudo python3 regular_prune.py --cfg cfg/yolo-fastest-xl-test.cfg --data data/obj-boar.data --weights weights/last.pt --percent 0.95 --img-size 1280
Namespace(cfg='cfg/yolo-fastest-xl-test.cfg', data='data/obj-boar.data', img_size=1280, percent=0.95, weights='weights/last.pt')
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Warning: Unrecognized Layer Type: dropout
Model Summary: 253 layers, 834324 parameters, 834324 gradients
Caching labels (213 found, 0 missing, 558 empty, 0 duplicate, for 771 images): 100%|██████| 771/771 [00:00<00:00, 25955.60it/s]
Class Images Targets P R [email protected] F1: 0%| | 0/49 [00:00<?, ?it/s]/home/xxx/Downloads/yolov4comp3/test.py:152: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(*, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:882.)
ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
Class Images Targets P R [email protected] F1: 100%|████████| 49/49 [00:14<00:00, 3.38it/s]
all 771 442 0.615 0.686 0.684 0.648
Threshold should be less than 0.0000.
The corresponding prune ratio is 0.651.
Channels with Gamma value less than 0.0661 are pruned!
Caching labels (213 found, 0 missing, 558 empty, 0 duplicate, for 771 images): 100%|██████| 771/771 [00:00<00:00, 26787.01it/s]
Class Images Targets P R [email protected] F1: 100%|████████| 49/49 [00:13<00:00, 3.55it/s]
all 771 442 0 0 0 0
Number of channels has been reduced from 12184 to 1032
Prune ratio: 0.915
mAP of the pruned model is 0.0000
layer index: 0 total channel: 16 remaining channel: 8
layer index: 1 total channel: 16 remaining channel: 16
layer index: 2 total channel: 16 remaining channel: 8
layer index: 4 total channel: 16 remaining channel: 8
layer index: 5 total channel: 16 remaining channel: 8
layer index: 6 total channel: 8 remaining channel: 8
layer index: 9 total channel: 48 remaining channel: 16
layer index: 10 total channel: 48 remaining channel: 24
layer index: 12 total channel: 64 remaining channel: 8
layer index: 13 total channel: 64 remaining channel: 8
layer index: 14 total channel: 16 remaining channel: 8
layer index: 17 total channel: 64 remaining channel: 8
layer index: 18 total channel: 64 remaining channel: 8
layer index: 19 total channel: 16 remaining channel: 8
layer index: 22 total channel: 64 remaining channel: 48
layer index: 23 total channel: 64 remaining channel: 24
layer index: 25 total channel: 96 remaining channel: 8
layer index: 26 total channel: 96 remaining channel: 8
layer index: 27 total channel: 16 remaining channel: 8
layer index: 30 total channel: 96 remaining channel: 8
layer index: 31 total channel: 96 remaining channel: 8
layer index: 32 total channel: 16 remaining channel: 8
layer index: 35 total channel: 96 remaining channel: 16
layer index: 36 total channel: 96 remaining channel: 40
layer index: 38 total channel: 192 remaining channel: 8
layer index: 39 total channel: 192 remaining channel: 8
layer index: 40 total channel: 32 remaining channel: 8
layer index: 43 total channel: 192 remaining channel: 8
layer index: 44 total channel: 192 remaining channel: 8
layer index: 45 total channel: 32 remaining channel: 8
layer index: 48 total channel: 192 remaining channel: 8
layer index: 49 total channel: 192 remaining channel: 8
layer index: 50 total channel: 32 remaining channel: 8
layer index: 53 total channel: 192 remaining channel: 16
layer index: 54 total channel: 192 remaining channel: 80
layer index: 55 total channel: 32 remaining channel: 16
layer index: 58 total channel: 192 remaining channel: 8
layer index: 59 total channel: 192 remaining channel: 40
layer index: 61 total channel: 272 remaining channel: 8
layer index: 62 total channel: 272 remaining channel: 8
layer index: 63 total channel: 48 remaining channel: 8
layer index: 66 total channel: 272 remaining channel: 8
layer index: 67 total channel: 272 remaining channel: 16
layer index: 68 total channel: 48 remaining channel: 16
layer index: 71 total channel: 272 remaining channel: 8
layer index: 72 total channel: 272 remaining channel: 8
layer index: 73 total channel: 48 remaining channel: 8
layer index: 76 total channel: 272 remaining channel: 8
layer index: 77 total channel: 272 remaining channel: 8
layer index: 78 total channel: 48 remaining channel: 8
layer index: 81 total channel: 272 remaining channel: 16
layer index: 82 total channel: 272 remaining channel: 32
layer index: 84 total channel: 448 remaining channel: 8
layer index: 85 total channel: 448 remaining channel: 8
layer index: 86 total channel: 96 remaining channel: 8
layer index: 89 total channel: 448 remaining channel: 8
layer index: 90 total channel: 448 remaining channel: 16
layer index: 91 total channel: 96 remaining channel: 8
layer index: 94 total channel: 448 remaining channel: 8
layer index: 95 total channel: 448 remaining channel: 16
layer index: 96 total channel: 96 remaining channel: 8
layer index: 99 total channel: 448 remaining channel: 8
layer index: 100 total channel: 448 remaining channel: 8
layer index: 101 total channel: 96 remaining channel: 8
layer index: 104 total channel: 448 remaining channel: 8
layer index: 105 total channel: 448 remaining channel: 8
layer index: 106 total channel: 96 remaining channel: 16
layer index: 109 total channel: 96 remaining channel: 8
layer index: 110 total channel: 96 remaining channel: 16
layer index: 111 total channel: 128 remaining channel: 8
layer index: 112 total channel: 128 remaining channel: 24
layer index: 113 total channel: 128 remaining channel: 32
layer index: 119 total channel: 96 remaining channel: 8
layer index: 120 total channel: 96 remaining channel: 16
layer index: 121 total channel: 96 remaining channel: 8
layer index: 122 total channel: 96 remaining channel: 24
layer index: 123 total channel: 96 remaining channel: 32
Prune channels: 11152 Prune ratio: 0.899
Traceback (most recent call last):
File "regular_prune.py", line 207, in