iris
iris copied to clipboard
Repeating Tracemalloc Benchmark for accuracy
~~A demonstration of how we can use ASV's built-in repetition logic to improve the accuracy of tracemalloc benchmarking.~~
~~I welcome anyone who wants to finish this off - I have some other things I need to focus on at the moment.~~
Edit 2024-07-05
Recovering from a disastrous afternoon yesterday, I believe I now have this ready to go. I have tested it and it definitely does benefit from the repeat behaviour by detecting when accuracy prevents certainty about a regression. The in-built reporting for byte measurements is also quite nice, including automatic choice between KB / MB / etcetera.
I will have this reviewable by Thursday 2024-07-04
Codecov Report
All modified and coverable lines are covered by tests :white_check_mark:
Project coverage is 89.78%. Comparing base (
1bfe311) to head (b4cb41b). Report is 69 commits behind head on main.
Additional details and impacted files
@@ Coverage Diff @@
## main #5981 +/- ##
=======================================
Coverage 89.78% 89.78%
=======================================
Files 88 88
Lines 23056 23056
Branches 5027 5027
=======================================
Hits 20700 20700
Misses 1624 1624
Partials 732 732
:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.
:stopwatch: Performance Benchmark Report: 6e499f42
Performance shifts
Full benchmark results
Benchmarks that have stayed the same:
| Change | Before [b8571748] | After [6e499f42] | Ratio | Benchmark (Parameter) |
|----------|----------------------|---------------------|---------|----------------------------------------------------------------------------------------------|
| | 53.1±0.6ms | 52.8±0.5ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_COUNT(False) |
| | 54.5±0.8ms | 53.5±0.4ms | 0.98 | aggregate_collapse.Aggregation.time_aggregated_by_COUNT(True) |
| | 188±1ms | 189±3ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_FAST_PERCENTILE(False) |
| | 190±1ms | 189±1ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_FAST_PERCENTILE(True) |
| | 36.2±0.2ms | 36.3±0.4ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_GMEAN(False) |
| | 36.9±0.5ms | 37.1±0.3ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_GMEAN(True) |
| | 36.3±0.2ms | 36.6±0.5ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_HMEAN(False) |
| | 37.3±0.4ms | 37.1±0.3ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_HMEAN(True) |
| | 46.3±0.8ms | 46.1±0.7ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MAX(False) |
| | 46.9±0.5ms | 47.3±0.6ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_MAX(True) |
| | 119±2ms | 119±0.7ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_MAX_RUN(False) |
| | 121±2ms | 121±2ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_MAX_RUN(True) |
| | 51.1±0.7ms | 50.6±0.6ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MEAN(False) |
| | 51.9±0.9ms | 51.4±0.8ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MEAN(True) |
| | 36.5±0.3ms | 35.9±0.6ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MEDIAN(False) |
| | 37.1±0.2ms | 36.8±0.2ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MEDIAN(True) |
| | 46.2±1ms | 45.7±0.7ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MIN(False) |
| | 47.2±0.8ms | 46.9±0.6ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_MIN(True) |
| | 1.34±0.02s | 1.33±0.01s | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_PEAK(False) |
| | 1.33±0.01s | 1.33±0.02s | 1 | aggregate_collapse.Aggregation.time_aggregated_by_PEAK(True) |
| | 679±10ms | 705±20ms | 1.04 | aggregate_collapse.Aggregation.time_aggregated_by_PERCENTILE(False) |
| | 678±10ms | 687±10ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_PERCENTILE(True) |
| | 34.9±0.6ms | 34.9±0.4ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_PROPORTION(False) |
| | 35.4±0.3ms | 35.7±0.5ms | 1.01 | aggregate_collapse.Aggregation.time_aggregated_by_PROPORTION(True) |
| | 61.8±0.8ms | 61.5±0.5ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_RMS(False) |
| | 62.4±0.5ms | 62.3±0.3ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_RMS(True) |
| | 65.6±0.6ms | 65.7±0.6ms | 1 | aggregate_collapse.Aggregation.time_aggregated_by_STD_DEV(False) |
| | 66.8±2ms | 66.1±0.9ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_STD_DEV(True) |
| | 61.2±0.5ms | 60.6±0.7ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_VARIANCE(False) |
| | 62.2±0.9ms | 61.7±0.6ms | 0.99 | aggregate_collapse.Aggregation.time_aggregated_by_VARIANCE(True) |
| | 20.0±1ms | 19.7±1ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_COUNT(False) |
| | 23.7±4ms | 23.1±0.3ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_COUNT(True) |
| | 132±2ms | 131±2ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_FAST_PERCENTILE(False) |
| | 145±1ms | 144±0.9ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_FAST_PERCENTILE(True) |
| | 18.0±0.8ms | 17.8±0.2ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_GMEAN(False) |
| | 21.6±1ms | 21.7±1ms | 1.01 | aggregate_collapse.Aggregation.time_collapsed_by_GMEAN(True) |
| | 18.0±1ms | 17.8±0.4ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_HMEAN(False) |
| | 21.5±0.2ms | 21.6±0.3ms | 1.01 | aggregate_collapse.Aggregation.time_collapsed_by_HMEAN(True) |
| | 18.9±0.7ms | 18.6±0.5ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_MAX(False) |
| | 22.5±0.4ms | 22.3±0.4ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_MAX(True) |
| | 34.6±1ms | 34.2±1ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_MAX_RUN(False) |
| | 38.3±0.8ms | 37.8±0.7ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_MAX_RUN(True) |
| | 19.1±0.2ms | 18.7±0.3ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_MEAN(False) |
| | 22.6±0.4ms | 22.5±0.5ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_MEAN(True) |
| | 18.6±0.5ms | 18.7±0.6ms | 1.01 | aggregate_collapse.Aggregation.time_collapsed_by_MEDIAN(False) |
| | 22.2±0.2ms | 22.3±0.4ms | 1.01 | aggregate_collapse.Aggregation.time_collapsed_by_MEDIAN(True) |
| | 18.4±0.7ms | 18.3±0.4ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_MIN(False) |
| | 22.5±0.5ms | 22.1±0.4ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_MIN(True) |
| | 552±5ms | 560±10ms | 1.02 | aggregate_collapse.Aggregation.time_collapsed_by_PEAK(False) |
| | 557±6ms | 557±5ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_PEAK(True) |
| | 150±3ms | 148±2ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_PERCENTILE(False) |
| | 168±2ms | 167±2ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_PERCENTILE(True) |
| | 17.8±0.4ms | 17.6±0.5ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_PROPORTION(False) |
| | 21.3±1ms | 21.2±0.5ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_PROPORTION(True) |
| | 21.4±0.4ms | 20.9±0.3ms | 0.98 | aggregate_collapse.Aggregation.time_collapsed_by_RMS(False) |
| | 24.4±0.5ms | 24.8±1ms | 1.02 | aggregate_collapse.Aggregation.time_collapsed_by_RMS(True) |
| | 21.0±0.4ms | 21.1±0.7ms | 1.01 | aggregate_collapse.Aggregation.time_collapsed_by_STD_DEV(False) |
| | 24.7±0.3ms | 24.6±0.6ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_STD_DEV(True) |
| | 20.6±0.6ms | 20.4±0.4ms | 0.99 | aggregate_collapse.Aggregation.time_collapsed_by_VARIANCE(False) |
| | 24.2±0.6ms | 24.2±0.5ms | 1 | aggregate_collapse.Aggregation.time_collapsed_by_VARIANCE(True) |
| | 84.2±2ms | 82.3±0.9ms | 0.98 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_MEAN(False) |
| | 83.5±0.6ms | 83.1±1ms | 1 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_MEAN(True) |
| | 95.3±1ms | 94.7±0.8ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_RMS(False) |
| | 95.4±2ms | 94.9±1ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_RMS(True) |
| | 58.5±0.9ms | 58.2±0.8ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_SUM(False) |
| | 58.7±0.7ms | 57.9±0.5ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_aggregated_by_SUM(True) |
| | 29.1±0.4ms | 28.8±0.5ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_MEAN(False) |
| | 32.5±0.7ms | 32.6±0.7ms | 1 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_MEAN(True) |
| | 31.1±0.5ms | 30.8±0.7ms | 0.99 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_RMS(False) |
| | 34.4±0.7ms | 34.8±0.5ms | 1.01 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_RMS(True) |
| | 25.5±0.2ms | 25.7±0.9ms | 1 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_SUM(False) |
| | 29.5±0.3ms | 29.0±0.5ms | 0.98 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_SUM(True) |
| | 324±6ms | 318±3ms | 0.98 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_WPERCENTILE(False) |
| | 350±10ms | 340±5ms | 0.97 | aggregate_collapse.WeightedAggregation.time_w_collapsed_by_WPERCENTILE(True) |
| | 1.13±0.01ms | 1.10±0.01ms | 0.97 | cube.CubeCreation.time_create(False, 'construct') |
| | 399±8μs | 391±7μs | 0.98 | cube.CubeCreation.time_create(False, 'instantiate') |
| | 952±20μs | 939±6μs | 0.99 | cube.CubeCreation.time_create(True, 'construct') |
| | 572±9μs | 567±3μs | 0.99 | cube.CubeCreation.time_create(True, 'instantiate') |
| | 224±6ms | 222±3ms | 0.99 | cube.CubeEquality.time_equality(False, False, 'all_equal') |
| | 113±2ms | 112±1ms | 0.99 | cube.CubeEquality.time_equality(False, False, 'coord_inequality') |
| | 235±3ms | 236±5ms | 1 | cube.CubeEquality.time_equality(False, False, 'data_inequality') |
| | 16.6±0.1μs | 16.5±0.2μs | 0.99 | cube.CubeEquality.time_equality(False, False, 'metadata_inequality') |
| | 310±20ms | 307±4ms | 0.99 | cube.CubeEquality.time_equality(False, True, 'all_equal') |
| | 203±4ms | 202±3ms | 0.99 | cube.CubeEquality.time_equality(False, True, 'coord_inequality') |
| | 321±8ms | 317±2ms | 0.99 | cube.CubeEquality.time_equality(False, True, 'data_inequality') |
| | 16.5±0.1μs | 16.4±0.2μs | 1 | cube.CubeEquality.time_equality(False, True, 'metadata_inequality') |
| | 222±3ms | 221±3ms | 0.99 | cube.CubeEquality.time_equality(True, False, 'all_equal') |
| | 113±3ms | 112±2ms | 0.99 | cube.CubeEquality.time_equality(True, False, 'coord_inequality') |
| | 236±10ms | 232±3ms | 0.99 | cube.CubeEquality.time_equality(True, False, 'data_inequality') |
| | 54.4±0.6μs | 52.9±0.3μs | 0.97 | cube.CubeEquality.time_equality(True, False, 'metadata_inequality') |
| | 307±3ms | 306±3ms | 1 | cube.CubeEquality.time_equality(True, True, 'all_equal') |
| | 199±2ms | 198±2ms | 1 | cube.CubeEquality.time_equality(True, True, 'coord_inequality') |
| | 317±4ms | 315±4ms | 1 | cube.CubeEquality.time_equality(True, True, 'data_inequality') |
| | 54.0±0.8μs | 54.9±0.4μs | 1.02 | cube.CubeEquality.time_equality(True, True, 'metadata_inequality') |
| | 403±1ns | 410±3ns | 1.02 | experimental.ugrid.regions_combine.CombineRegionsComputeRealData.time_compute_data(50) |
| | 281±2ms | 278±2ms | 0.99 | experimental.ugrid.regions_combine.CombineRegionsComputeRealData.time_compute_data(500) |
| | 14.2±0.09ms | 14.3±0.1ms | 1.01 | experimental.ugrid.regions_combine.CombineRegionsCreateCube.time_create_combined_cube(50) |
| | 16.3±0.9ms | 16.0±0.4ms | 0.98 | experimental.ugrid.regions_combine.CombineRegionsCreateCube.time_create_combined_cube(500) |
| | 104±0.4ms | 105±1ms | 1.01 | experimental.ugrid.regions_combine.CombineRegionsFileStreamedCalc.time_stream_file2file(50) |
| | 719±8ms | 726±6ms | 1.01 | experimental.ugrid.regions_combine.CombineRegionsFileStreamedCalc.time_stream_file2file(500) |
| | 66.0±0.6ms | 66.7±0.4ms | 1.01 | experimental.ugrid.regions_combine.CombineRegionsSaveData.time_save(50) |
| | 677±9ms | 679±4ms | 1 | experimental.ugrid.regions_combine.CombineRegionsSaveData.time_save(500) |
| | 2.1752849999999997 | 2.1752849999999997 | 1 | experimental.ugrid.regions_combine.CombineRegionsSaveData.track_filesize_saved(50) |
| | 216.01528499999998 | 216.01528499999998 | 1 | experimental.ugrid.regions_combine.CombineRegionsSaveData.track_filesize_saved(500) |
| | 659±8μs | 665±7μs | 1.01 | import_iris.Iris.time__concatenate |
| | 181±4μs | 181±4μs | 1 | import_iris.Iris.time__constraints |
| | 111±1μs | 113±2μs | 1.02 | import_iris.Iris.time__data_manager |
| | 94.2±0.9μs | 93.0±1μs | 0.99 | import_iris.Iris.time__deprecation |
| | 137±1μs | 138±1μs | 1.01 | import_iris.Iris.time__lazy_data |
| | 886±10μs | 899±5μs | 1.01 | import_iris.Iris.time__merge |
| | 76.4±1μs | 76.4±0.7μs | 1 | import_iris.Iris.time__representation |
| | 481±4μs | 486±4μs | 1.01 | import_iris.Iris.time_analysis |
| | 140±1μs | 140±0.9μs | 1 | import_iris.Iris.time_analysis__area_weighted |
| | 110±1μs | 110±2μs | 1 | import_iris.Iris.time_analysis__grid_angles |
| | 244±3μs | 243±1μs | 1 | import_iris.Iris.time_analysis__interpolation |
| | 187±1μs | 189±2μs | 1.01 | import_iris.Iris.time_analysis__regrid |
| | 110±0.5μs | 112±0.8μs | 1.01 | import_iris.Iris.time_analysis__scipy_interpolate |
| | 139±2μs | 141±3μs | 1.01 | import_iris.Iris.time_analysis_calculus |
| | 324±2μs | 327±3μs | 1.01 | import_iris.Iris.time_analysis_cartography |
| | 94.1±0.9μs | 93.6±1μs | 0.99 | import_iris.Iris.time_analysis_geomerty |
| | 216±2μs | 217±2μs | 1 | import_iris.Iris.time_analysis_maths |
| | 98.0±0.8μs | 97.6±0.8μs | 1 | import_iris.Iris.time_analysis_stats |
| | 175±1μs | 174±2μs | 0.99 | import_iris.Iris.time_analysis_trajectory |
| | 305±3μs | 302±2μs | 0.99 | import_iris.Iris.time_aux_factory |
| | 83.1±0.8μs | 83.6±0.5μs | 1.01 | import_iris.Iris.time_common |
| | 162±1μs | 162±4μs | 1 | import_iris.Iris.time_common_lenient |
| | 977±7μs | 981±4μs | 1 | import_iris.Iris.time_common_metadata |
| | 133±2μs | 132±0.6μs | 0.99 | import_iris.Iris.time_common_mixin |
| | 1.17±0.01ms | 1.18±0ms | 1.01 | import_iris.Iris.time_common_resolve |
| | 200±1μs | 199±2μs | 0.99 | import_iris.Iris.time_config |
| | 116±1μs | 115±0.6μs | 0.99 | import_iris.Iris.time_coord_categorisation |
| | 361±4μs | 361±2μs | 1 | import_iris.Iris.time_coord_systems |
| | 742±10μs | 736±3μs | 0.99 | import_iris.Iris.time_coords |
| | 666±7μs | 661±7μs | 0.99 | import_iris.Iris.time_cube |
| | 227±4μs | 226±4μs | 0.99 | import_iris.Iris.time_exceptions |
| | 77.9±0.5μs | 77.3±0.5μs | 0.99 | import_iris.Iris.time_experimental |
| | 191±3μs | 188±2μs | 0.98 | import_iris.Iris.time_fileformats |
| | 248±2μs | 248±2μs | 1 | import_iris.Iris.time_fileformats__ff |
| | 2.68±0.02ms | 2.69±0.01ms | 1 | import_iris.Iris.time_fileformats__ff_cross_references |
| | 79.4±0.6μs | 79.0±0.6μs | 1 | import_iris.Iris.time_fileformats__pp_lbproc_pairs |
| | 116±1μs | 115±0.9μs | 0.99 | import_iris.Iris.time_fileformats_abf |
| | 361±4μs | 361±1μs | 1 | import_iris.Iris.time_fileformats_cf |
| | 5.36±0.04ms | 5.32±0.07ms | 0.99 | import_iris.Iris.time_fileformats_dot |
| | 75.3±0.4μs | 74.1±0.6μs | 0.99 | import_iris.Iris.time_fileformats_name |
| | 258±4μs | 256±4μs | 0.99 | import_iris.Iris.time_fileformats_name_loaders |
| | 119±1μs | 118±2μs | 0.99 | import_iris.Iris.time_fileformats_netcdf |
| | 122±1μs | 121±2μs | 0.99 | import_iris.Iris.time_fileformats_nimrod |
| | 212±4μs | 213±3μs | 1 | import_iris.Iris.time_fileformats_nimrod_load_rules |
| | 776±7μs | 774±5μs | 1 | import_iris.Iris.time_fileformats_pp |
| | 181±1μs | 182±3μs | 1.01 | import_iris.Iris.time_fileformats_pp_load_rules |
| | 135±1μs | 133±1μs | 0.99 | import_iris.Iris.time_fileformats_pp_save_rules |
| | 509±2μs | 512±2μs | 1.01 | import_iris.Iris.time_fileformats_rules |
| | 219±4μs | 219±2μs | 1 | import_iris.Iris.time_fileformats_structured_array_identification |
| | 82.9±0.9μs | 83.1±5μs | 1 | import_iris.Iris.time_fileformats_um |
| | 161±2μs | 159±1μs | 0.99 | import_iris.Iris.time_fileformats_um__fast_load |
| | 139±2μs | 137±1μs | 0.99 | import_iris.Iris.time_fileformats_um__fast_load_structured_fields |
| | 77.0±0.8μs | 75.3±0.5μs | 0.98 | import_iris.Iris.time_fileformats_um__ff_replacement |
| | 81.8±0.7μs | 81.4±0.9μs | 0.99 | import_iris.Iris.time_fileformats_um__optimal_array_structuring |
| | 972±5μs | 984±60μs | 1.01 | import_iris.Iris.time_fileformats_um_cf_map |
| | 138±2μs | 136±1μs | 0.98 | import_iris.Iris.time_io |
| | 172±2μs | 171±0.9μs | 1 | import_iris.Iris.time_io_format_picker |
| | 228±2μs | 230±2μs | 1.01 | import_iris.Iris.time_iris |
| | 130±8μs | 128±0.8μs | 0.99 | import_iris.Iris.time_iterate |
| | 8.41±0.1ms | 8.42±0.05ms | 1 | import_iris.Iris.time_palette |
| | 2.22±0.06ms | 2.21±0.05ms | 1 | import_iris.Iris.time_plot |
| | 105±2μs | 104±1μs | 1 | import_iris.Iris.time_quickplot |
| | 2.16±0.05ms | 2.14±0.02ms | 0.99 | import_iris.Iris.time_std_names |
| | 1.76±0.01ms | 1.77±0.08ms | 1 | import_iris.Iris.time_symbols |
| | 34.2±1ms | 34.0±0.7ms | 1 | import_iris.Iris.time_tests |
| | 255±0.9μs | 256±2μs | 1 | import_iris.Iris.time_third_party_cartopy |
| | 4.83±0.02ms | 4.84±0.03ms | 1 | import_iris.Iris.time_third_party_cf_units |
| | 119±2μs | 119±0.9μs | 0.99 | import_iris.Iris.time_third_party_cftime |
| | 2.77±0.01ms | 2.78±0.01ms | 1 | import_iris.Iris.time_third_party_matplotlib |
| | 1.07±0.04ms | 1.07±0.01ms | 0.99 | import_iris.Iris.time_third_party_numpy |
| | 170±0.6μs | 170±1μs | 1 | import_iris.Iris.time_third_party_scipy |
| | 99.8±1μs | 99.6±0.6μs | 1 | import_iris.Iris.time_time |
| | 320±3μs | 325±30μs | 1.02 | import_iris.Iris.time_util |
| | 72.9±0.4μs | 73.2±1μs | 1 | iterate.IZip.time_izip |
| | 8.11±0.2ms | 8.03±0.05ms | 0.99 | load.LoadAndRealise.time_load((1280, 960, 5), False, 'FF') |
| | 23.6±0.8ms | 23.9±0.2ms | 1.01 | load.LoadAndRealise.time_load((1280, 960, 5), False, 'NetCDF') |
| | 8.86±0.1ms | 8.83±0.08ms | 1 | load.LoadAndRealise.time_load((1280, 960, 5), False, 'PP') |
| | 8.07±0.06ms | 8.05±0.05ms | 1 | load.LoadAndRealise.time_load((1280, 960, 5), True, 'FF') |
| | 21.3±0.3ms | 21.3±0.2ms | 1 | load.LoadAndRealise.time_load((1280, 960, 5), True, 'NetCDF') |
| | 8.83±0.07ms | 8.79±0.09ms | 1 | load.LoadAndRealise.time_load((1280, 960, 5), True, 'PP') |
| | 1.38±0.02s | 1.36±0.03s | 0.99 | load.LoadAndRealise.time_load((2, 2, 1000), False, 'FF') |
| | 21.0±0.2ms | 20.7±0.3ms | 0.98 | load.LoadAndRealise.time_load((2, 2, 1000), False, 'NetCDF') |
| | 1.52±0.01s | 1.53±0.04s | 1.01 | load.LoadAndRealise.time_load((2, 2, 1000), False, 'PP') |
| | 1.39±0.03s | 1.37±0.03s | 0.99 | load.LoadAndRealise.time_load((2, 2, 1000), True, 'FF') |
| | 20.7±0.2ms | 20.5±0.09ms | 0.99 | load.LoadAndRealise.time_load((2, 2, 1000), True, 'NetCDF') |
| | 1.51±0.02s | 1.51±0.04s | 1 | load.LoadAndRealise.time_load((2, 2, 1000), True, 'PP') |
| | 3.91±0.03ms | 3.92±0.02ms | 1 | load.LoadAndRealise.time_load((50, 50, 2), False, 'FF') |
| | 20.0±0.4ms | 20.0±0.3ms | 1 | load.LoadAndRealise.time_load((50, 50, 2), False, 'NetCDF') |
| | 4.25±0.06ms | 4.14±0.03ms | 0.98 | load.LoadAndRealise.time_load((50, 50, 2), False, 'PP') |
| | 3.88±0.05ms | 3.91±0.01ms | 1.01 | load.LoadAndRealise.time_load((50, 50, 2), True, 'FF') |
| | 20.0±0.5ms | 19.9±0.3ms | 0.99 | load.LoadAndRealise.time_load((50, 50, 2), True, 'NetCDF') |
| | 4.16±0.07ms | 4.16±0.04ms | 1 | load.LoadAndRealise.time_load((50, 50, 2), True, 'PP') |
| | 32.0±1ms | 35.3±3ms | 1.1 | load.LoadAndRealise.time_realise((1280, 960, 5), False, 'FF') |
| | 19.1±0.2ms | 18.9±0.4ms | 0.99 | load.LoadAndRealise.time_realise((1280, 960, 5), False, 'NetCDF') |
| | 13.4±1ms | 14.4±4ms | 1.08 | load.LoadAndRealise.time_realise((1280, 960, 5), False, 'PP') |
| | 26.2±2ms | 25.4±2ms | 0.97 | load.LoadAndRealise.time_realise((1280, 960, 5), True, 'FF') |
| | 70.2±2ms | 70.4±2ms | 1 | load.LoadAndRealise.time_realise((1280, 960, 5), True, 'NetCDF') |
| | 25.6±1ms | 25.6±1ms | 1 | load.LoadAndRealise.time_realise((1280, 960, 5), True, 'PP') |
| | 435±3ms | 439±10ms | 1.01 | load.LoadAndRealise.time_realise((2, 2, 1000), False, 'FF') |
| | 2.77±0.08ms | 2.84±0.1ms | 1.03 | load.LoadAndRealise.time_realise((2, 2, 1000), False, 'NetCDF') |
| | 441±3ms | 441±5ms | 1 | load.LoadAndRealise.time_realise((2, 2, 1000), False, 'PP') |
| | 441±4ms | 440±4ms | 1 | load.LoadAndRealise.time_realise((2, 2, 1000), True, 'FF') |
| | 2.89±0.06ms | 2.90±0.2ms | 1 | load.LoadAndRealise.time_realise((2, 2, 1000), True, 'NetCDF') |
| | 448±2ms | 449±7ms | 1 | load.LoadAndRealise.time_realise((2, 2, 1000), True, 'PP') |
| | 1.55±0.1ms | 1.55±0.08ms | 1 | load.LoadAndRealise.time_realise((50, 50, 2), False, 'FF') |
| | 2.80±0.05ms | 2.77±0.1ms | 0.99 | load.LoadAndRealise.time_realise((50, 50, 2), False, 'NetCDF') |
| | 1.51±0.1ms | 1.57±0.03ms | 1.04 | load.LoadAndRealise.time_realise((50, 50, 2), False, 'PP') |
| | 1.53±0.06ms | 1.52±0.1ms | 0.99 | load.LoadAndRealise.time_realise((50, 50, 2), True, 'FF') |
| | 2.77±0.1ms | 2.85±0.1ms | 1.03 | load.LoadAndRealise.time_realise((50, 50, 2), True, 'NetCDF') |
| | 1.54±0.09ms | 1.59±0.1ms | 1.03 | load.LoadAndRealise.time_realise((50, 50, 2), True, 'PP') |
| | 361±4ms | 358±7ms | 0.99 | load.ManyVars.time_many_var_load |
| | 8.23±0.08ms | 8.29±0.1ms | 1.01 | load.STASHConstraint.time_stash_constraint((1280, 960, 5), 'FF') |
| | 9.02±0.08ms | 8.95±0.09ms | 0.99 | load.STASHConstraint.time_stash_constraint((1280, 960, 5), 'PP') |
| | 1.36±0.01s | 1.37±0.02s | 1.01 | load.STASHConstraint.time_stash_constraint((2, 2, 1000), 'FF') |
| | 1.53±0.02s | 1.53±0.03s | 1 | load.STASHConstraint.time_stash_constraint((2, 2, 1000), 'PP') |
| | 3.93±0.03ms | 3.99±0.2ms | 1.01 | load.STASHConstraint.time_stash_constraint((2, 2, 2), 'FF') |
| | 4.21±0.03ms | 4.25±0.04ms | 1.01 | load.STASHConstraint.time_stash_constraint((2, 2, 2), 'PP') |
| | 8.05±0.1ms | 8.05±0.04ms | 1 | load.StructuredFF.time_structured_load((1280, 960, 5), False) |
| | 4.70±0.06ms | 4.72±0.03ms | 1 | load.StructuredFF.time_structured_load((1280, 960, 5), True) |
| | 1.35±0.02s | 1.37±0.03s | 1.01 | load.StructuredFF.time_structured_load((2, 2, 1000), False) |
| | 363±4ms | 364±3ms | 1 | load.StructuredFF.time_structured_load((2, 2, 1000), True) |
| | 3.89±0.04ms | 3.91±0.02ms | 1.01 | load.StructuredFF.time_structured_load((2, 2, 2), False) |
| | 3.52±0.02ms | 3.55±0.01ms | 1.01 | load.StructuredFF.time_structured_load((2, 2, 2), True) |
| | 144±1ms | 145±4ms | 1.01 | load.TimeConstraint.time_time_constraint(20, 'FF') |
| | 22.9±0.2ms | 23.3±0.2ms | 1.02 | load.TimeConstraint.time_time_constraint(20, 'NetCDF') |
| | 161±1ms | 160±1ms | 1 | load.TimeConstraint.time_time_constraint(20, 'PP') |
| | 28.6±0.1ms | 28.9±0.1ms | 1.01 | load.TimeConstraint.time_time_constraint(3, 'FF') |
| | 22.8±0.2ms | 22.6±0.2ms | 0.99 | load.TimeConstraint.time_time_constraint(3, 'NetCDF') |
| | 31.0±0.08ms | 31.0±0.1ms | 1 | load.TimeConstraint.time_time_constraint(3, 'PP') |
| | 18.6±1ms | 17.1±0.3ms | 0.92 | load.ugrid.BasicLoading.time_load_file(1) |
| | 41.1±1ms | 41.2±0.4ms | 1 | load.ugrid.BasicLoading.time_load_file(200000) |
| | 14.1±0.3ms | 14.0±0.3ms | 0.99 | load.ugrid.BasicLoading.time_load_mesh(1) |
| | 22.2±0.6ms | 21.5±0.2ms | 0.97 | load.ugrid.BasicLoading.time_load_mesh(200000) |
| | 17.4±0.3ms | 17.2±0.3ms | 0.99 | load.ugrid.BasicLoadingTime.time_load_file(1) |
| | 20.3±0.2ms | 19.9±0.5ms | 0.98 | load.ugrid.BasicLoadingTime.time_load_file(200000) |
| | 14.2±0.4ms | 14.3±0.2ms | 1.01 | load.ugrid.BasicLoadingTime.time_load_mesh(1) |
| | 17.0±0.2ms | 16.6±0.5ms | 0.97 | load.ugrid.BasicLoadingTime.time_load_mesh(200000) |
| | 18.2±0.3ms | 18.2±0.2ms | 1 | load.ugrid.Callback.time_load_file_callback(1) |
| | 49.7±0.4ms | 49.7±0.9ms | 1 | load.ugrid.Callback.time_load_file_callback(200000) |
| | 18.3±0.3ms | 18.4±0.5ms | 1.01 | load.ugrid.CallbackTime.time_load_file_callback(1) |
| | 22.0±0.5ms | 21.6±0.2ms | 0.98 | load.ugrid.CallbackTime.time_load_file_callback(200000) |
| | 2.74±0.1ms | 2.67±0.1ms | 0.97 | load.ugrid.DataRealisation.time_realise_data(10000) |
| | 5.42±0.8ms | 5.39±0.1ms | 0.99 | load.ugrid.DataRealisation.time_realise_data(200000) |
| | 37.9±1ms | 37.0±1ms | 0.98 | load.ugrid.DataRealisationTime.time_realise_data(10000) |
| | 799±10ms | 799±6ms | 1 | load.ugrid.DataRealisationTime.time_realise_data(200000) |
| | 132±1ms | 131±1ms | 0.99 | merge_concat.Concatenate.time_concatenate |
| | 47.4±0.4ms | 47.5±0.8ms | 1 | merge_concat.Merge.time_merge |
| | 6.69±0.09ms | 6.56±0.07ms | 0.98 | plot.AuxSort.time_aux_sort |
| | 73.7±5ms | 76.4±3ms | 1.04 | regridding.CurvilinearRegridding.time_regrid_pic |
| | 97.1±1ms | 97.4±0.5ms | 1 | regridding.HorizontalChunkedRegridding.time_regrid_area_w |
| | 47.1±2ms | 47.5±2ms | 1.01 | regridding.HorizontalChunkedRegridding.time_regrid_area_w_new_grid |
| | 4.07±0.04ms | 4.03±0.03ms | 0.99 | save.NetcdfSave.time_netcdf_save_cube(50, False) |
| | 71.0±0.5ms | 71.3±0.5ms | 1 | save.NetcdfSave.time_netcdf_save_cube(50, True) |
| | 52.1±2ms | 52.0±0.5ms | 1 | save.NetcdfSave.time_netcdf_save_cube(600, False) |
| | 564±5ms | 563±3ms | 1 | save.NetcdfSave.time_netcdf_save_cube(600, True) |
| | 89.2±0.5ns | 90.6±0.9ns | 1.02 | save.NetcdfSave.time_netcdf_save_mesh(50, False) |
| | 54.6±0.3ms | 55.1±0.4ms | 1.01 | save.NetcdfSave.time_netcdf_save_mesh(50, True) |
| | 92.4±1ns | 92.1±2ns | 1 | save.NetcdfSave.time_netcdf_save_mesh(600, False) |
| | 494±2ms | 496±3ms | 1 | save.NetcdfSave.time_netcdf_save_mesh(600, True) |
| | 42.2±2ms | 42.5±1ms | 1.01 | stats.PearsonR.time_lazy |
| | 18.8±0.4ms | 19.0±0.3ms | 1.01 | stats.PearsonR.time_real |
| | 23.2±1ms | 22.7±1ms | 0.98 | trajectory.TrajectoryInterpolation.time_trajectory_linear |
| | 60.8±0.3ms | 60.6±0.5ms | 1 | trajectory.TrajectoryInterpolation.time_trajectory_nearest |
Generated by GHA run 9807338050
:stopwatch: Performance Benchmark Report: 027501ff
Performance shifts
Full benchmark results
Benchmarks that have stayed the same:
| Change | Before [d3ec6174] | After [027501ff] | Ratio | Benchmark (Parameter) |
|----------|----------------------|---------------------|---------|--------------------------------------|
| | 1.2±0.3M | 1.2±0.3M | 1 | merge_concat.Merge.tracemalloc_merge |
Generated by GHA run 9839942792
We're up to 7 issues that this will close 📈
Thanks @HGWright!