MethodOfLines.jl
MethodOfLines.jl copied to clipboard
Can't extract results from solution
Trying to run this,
`using ModelingToolkit, MethodOfLines, OrdinaryDiffEq, DomainSets, LinearAlgebra, Dierckx, NonlinearSolve
theta = 0:pi/20:pi
xs = cos.(theta)
ys = sin.(theta)
points = [xs ys]
fchapBA = .1
fchapBF = .05
interp_extra0 = Spline1D(points[end : -1 : 1, 1],points[end: -1 :1, 2])
interp_extra1 = Spline1D(points[end : -1 : 1, 1],points[end: -1 :1, 2])
extra0(x) = interp_extra0(x)
extra1(x) = interp_extra1(x)
@register_symbolic extra0(x)
@register_symbolic extra1(x)
@parameters x y
@variables z(..) Dy_z(..)
Dx = Differential(x)
Dy = Differential(y)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
eqs = [
((1+Dx(z(x,y))^2)*Dyy(z(x,y)) + 2*Dx(z(x,y))*Dy_z(x,y)*Dx(Dy_z(x,y)) + (1+Dy_z(x,y)^2)*Dxx(z(x,y))) ~ 0,
Dy_z(x,y) ~ Dy(z(x, y))
]
domains = [x ∈ Interval(0, 1),
y ∈ Interval(0, 1)]
bcs = [
z(0, y) ~ extra0(fchapBA),
z(1, y) ~ extra0(1-fchapBF),
z(x, 0) ~ extra0(x),
z(x, 1) ~ extra1(x),
]
@named pdesys = PDESystem(eqs, bcs, domains, [x,y], [z(x, y), Dy_z(x, y)])
N = 20
dx = 0.05
dy = 0.05
order = 2
discretization = MOLFiniteDifference([x=>dx, y=>dy], nothing, approx_order=order)
@time prob = discretize(pdesys, discretization)
println("Solve:")
@time sol = NonlinearSolve.solve(prob, NewtonRaphson())
grid = get_discrete(pdesys, discretization)
discrete_x = grid[x]
discrete_y = grid[y]
z_sol = map(d -> sol[d][1], grid[z(x, y)])
`
And this error shows up
ERROR: ArgumentError: Cannot find the parent of var"Dy_z[22]ˍnothing". Stacktrace: [1] getparent @ C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:420 [inlined] [2] getparent @ C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:412 [inlined] [3] _getname(x::Sym{Real, Nothing}, val::Dict{Any, Any}) @ Symbolics C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:401 [4] getname(x::Sym{Real, Nothing}, val::Dict{Any, Any}) (repeats 2 times) @ Symbolics C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:409 [5] renamespace(sys::NonlinearSystem, x::Sym{Real, Nothing}) @ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\abstractsystem.jl:362 [6] states(sys::NonlinearSystem, v::Sym{Real, Nothing}) @ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\abstractsystem.jl:469 [7] (::ModelingToolkit.var"#315#320"{NonlinearSystem})(x::Sym{Real, Nothing}) @ ModelingToolkit .\none:0 [8] iterate @ .\generator.jl:47 [inlined] [9] _all(f::Base.var"#282#284", itr::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, ModelingToolkit.var"#315#320"{NonlinearSystem}}, #unused#::Colon) @ Base .\reduce.jl:930 [10] all @ .\reduce.jl:918 [inlined] [11] Dict(kv::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, ModelingToolkit.var"#315#320"{NonlinearSystem}}) @ Base .\dict.jl:131 [12] build_explicit_observed_function(sys::NonlinearSystem, ts::Num; expression::Bool, output_type::Type, checkbounds::Bool) @ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\diffeqs\odesystem.jl:290 [13] build_explicit_observed_function @ C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\diffeqs\odesystem.jl:276 [inlined] [14] #596 @ C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\nonlinear\nonlinearsystem.jl:229 [inlined] [15] get!(default::ModelingToolkit.var"#596#602"{Num, NonlinearSystem}, h::Dict{Any, Any}, key::Term{Real, Nothing}) @ Base .\dict.jl:465 [16] (::ModelingToolkit.var"#generated_observed#601"{NonlinearSystem, Dict{Any, Any}})(obsvar::Num, u::Vector{Float64}, p::Nothing) @ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\nonlinear\nonlinearsystem.jl:228 [17] observed @ C:\Users\Alexandre.julia\packages\SciMLBase\YasGG\src\solutions\solution_interface.jl:135 [inlined] [18] getindex(A::SciMLBase.NonlinearSolution{Float64, 1, Vector{Float64}, Vector{Float64}, NonlinearProblem{Vector{Float64}, true, Nothing, NonlinearFunction{true, ModelingToolkit.var"#f#598"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xd8992cee, 0x0c2228ac, 0xe0732ac6, 0xf23f344c, 0x8a9d5dcf)}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x11d077a5, 0xb1dec8fb, 0xc28cc637, 0xb621f640, 0xa3e24f28)}}, UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, ModelingToolkit.var"#generated_observed#601"{NonlinearSystem, Dict{Any, Any}}, Nothing}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, NewtonRaphson{12, true, DataType, NonlinearSolve.DefaultLinSolve}, Nothing, Nothing}, sym::Num) @ SciMLBase C:\Users\Alexandre.julia\packages\SciMLBase\YasGG\src\solutions\solution_interface.jl:128 [19] (::var"#117#118")(d::Num) @ Main c:\Users\Alexandre\DownloadOFF\GitHub\KF\test.jl:84 [20] iterate @ .\generator.jl:47 [inlined] [21] _collect(c::Matrix{Num}, itr::Base.Generator{Matrix{Num}, var"#117#118"}, #unused#::Base.EltypeUnknown, isz::Base.HasShape{2}) @ Base .\array.jl:695 [22] collect_similar(cont::Matrix{Num}, itr::Base.Generator{Matrix{Num}, var"#117#118"}) @ Base .\array.jl:606 [23] map(f::Function, A::Matrix{Num}) @ Base .\abstractarray.jl:2294 [24] top-level scope @ c:\Users\Alexandre\DownloadOFF\GitHub\KF\test.jl:84
caused by: ArgumentError: Cannot find the parent of var"Dy_z[22]ˍnothing".
Stacktrace:
[1] getparent
@ C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:420 [inlined]
[2] getparent
@ C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:412 [inlined]
[3] _getname(x::Sym{Real, Nothing}, val::Dict{Any, Any})
@ Symbolics C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:401
[4] getname(x::Sym{Real, Nothing}, val::Dict{Any, Any}) (repeats 2 times)
@ Symbolics C:\Users\Alexandre.julia\packages\Symbolics\4VdEG\src\variable.jl:409
[5] renamespace(sys::NonlinearSystem, x::Sym{Real, Nothing})
@ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\abstractsystem.jl:362
[6] states(sys::NonlinearSystem, v::Sym{Real, Nothing})
@ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\abstractsystem.jl:469
[7] (::ModelingToolkit.var"#315#320"{NonlinearSystem})(x::Sym{Real, Nothing})
@ ModelingToolkit .\none:0
[8] iterate
@ .\generator.jl:47 [inlined]
[9] grow_to!(dest::Dict{Term{Real, Nothing}, Term{Real, Nothing}}, itr::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, ModelingToolkit.var"#315#320"{NonlinearSystem}}, st::Int64)
@ Base .\dict.jl:162
[10] grow_to!(dest::Dict{Any, Any}, itr::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, ModelingToolkit.var"#315#320"{NonlinearSystem}})
@ Base .\dict.jl:145
[11] dict_with_eltype
@ .\abstractdict.jl:545 [inlined]
[12] Dict(kv::Base.Generator{Vector{SymbolicUtils.Symbolic{Real}}, ModelingToolkit.var"#315#320"{NonlinearSystem}})
@ Base .\dict.jl:129
[13] build_explicit_observed_function(sys::NonlinearSystem, ts::Num; expression::Bool, output_type::Type, checkbounds::Bool)
@ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\diffeqs\odesystem.jl:290
[14] build_explicit_observed_function
@ C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\diffeqs\odesystem.jl:276 [inlined]
[15] #596
@ C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\nonlinear\nonlinearsystem.jl:229 [inlined]
[16] get!(default::ModelingToolkit.var"#596#602"{Num, NonlinearSystem}, h::Dict{Any, Any}, key::Term{Real, Nothing})
@ Base .\dict.jl:465
[17] (::ModelingToolkit.var"#generated_observed#601"{NonlinearSystem, Dict{Any, Any}})(obsvar::Num, u::Vector{Float64}, p::Nothing)
@ ModelingToolkit C:\Users\Alexandre.julia\packages\ModelingToolkit\9ppm9\src\systems\nonlinear\nonlinearsystem.jl:228
[18] observed
@ C:\Users\Alexandre.julia\packages\SciMLBase\YasGG\src\solutions\solution_interface.jl:135 [inlined]
[19] getindex(A::SciMLBase.NonlinearSolution{Float64, 1, Vector{Float64}, Vector{Float64}, NonlinearProblem{Vector{Float64}, true, Nothing, NonlinearFunction{true, ModelingToolkit.var"#f#598"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xd8992cee, 0x0c2228ac, 0xe0732ac6, 0xf23f344c, 0x8a9d5dcf)}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x11d077a5, 0xb1dec8fb, 0xc28cc637, 0xb621f640, 0xa3e24f28)}}, UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, ModelingToolkit.var"#generated_observed#601"{NonlinearSystem, Dict{Any, Any}}, Nothing}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, NewtonRaphson{12, true, DataType, NonlinearSolve.DefaultLinSolve}, Nothing, Nothing}, sym::Num)
@ SciMLBase C:\Users\Alexandre.julia\packages\SciMLBase\YasGG\src\solutions\solution_interface.jl:128
[20] (::var"#117#118")(d::Num)
@ Main c:\Users\Alexandre\DownloadOFF\GitHub\KF\test.jl:84
[21] iterate
@ .\generator.jl:47 [inlined]
[22] _collect(c::Matrix{Num}, itr::Base.Generator{Matrix{Num}, var"#117#118"}, #unused#::Base.EltypeUnknown, isz::Base.HasShape{2})
@ Base .\array.jl:695
[23] collect_similar(cont::Matrix{Num}, itr::Base.Generator{Matrix{Num}, var"#117#118"})
@ Base .\array.jl:606
[24] map(f::Function, A::Matrix{Num})
@ Base .\abstractarray.jl:2294
[25] top-level scope
@ c:\Users\Alexandre\DownloadOFF\GitHub\KF\test.jl:84
julia>
This looks like a problem in NonlinearSolve, are you running with latest versions? Can you retry after running Pkg.update()?
Got the same error after the update and with Tsit5() algorithm
Solving what with Tsit5? There's no ODEs?
Can't I use Tsit5 for PDE? Anyway NonlinearSolve continue with this error after the update
For time-dependent PDEs, yes. If your PDE isn't time dependent, or is discretized in all dimensions, then you get a NonlinearProblem instead of an ODEProblem.
Well, so what did I do wrong? I can't map the solution z_sol = map(d -> sol[d][1], grid[z(x, y)])
sys = symbolic_discretize(pdesys, discretization)[1]
simpsys = structural_simplify(sys)
Gives something odd.
julia> println(states(sys))
Term{Real, Nothing}[Dy_z[1, 1], Dy_z[2, 1], Dy_z[3, 1], Dy_z[4, 1], Dy_z[5, 1], Dy_z[6, 1], Dy_z[7, 1], Dy_z[8, 1], Dy_z[9, 1], Dy_z[10, 1], Dy_z[11, 1], Dy_z[12, 1], Dy_z[13, 1], Dy_z[14, 1], Dy_z[15, 1], Dy_z[16, 1], Dy_z[17, 1], Dy_z[18, 1], Dy_z[19, 1], Dy_z[20, 1], Dy_z[21, 1], Dy_z[1, 2], Dy_z[2, 2], Dy_z[3, 2], Dy_z[4, 2], Dy_z[5, 2], Dy_z[6, 2], Dy_z[7, 2], Dy_z[8, 2], Dy_z[9, 2], Dy_z[10, 2], Dy_z[11, 2], Dy_z[12, 2], Dy_z[13, 2], Dy_z[14, 2], Dy_z[15, 2], Dy_z[16, 2], Dy_z[17, 2], Dy_z[18, 2], Dy_z[19, 2], Dy_z[20, 2], Dy_z[21, 2], Dy_z[1, 3], Dy_z[2, 3], Dy_z[3, 3], Dy_z[4, 3], Dy_z[5, 3], Dy_z[6, 3], Dy_z[7, 3], Dy_z[8, 3], Dy_z[9, 3], Dy_z[10, 3], Dy_z[11, 3], Dy_z[12, 3], Dy_z[13, 3], Dy_z[14, 3], Dy_z[15, 3], Dy_z[16, 3], Dy_z[17, 3], Dy_z[18, 3], Dy_z[19, 3], Dy_z[20, 3], Dy_z[21, 3], Dy_z[1, 4], Dy_z[2, 4], Dy_z[3, 4], Dy_z[4, 4], Dy_z[5, 4], Dy_z[6, 4], Dy_z[7, 4], Dy_z[8, 4], Dy_z[9, 4], Dy_z[10, 4], Dy_z[11, 4], Dy_z[12, 4], Dy_z[13, 4], Dy_z[14, 4], Dy_z[15, 4], Dy_z[16, 4], Dy_z[17, 4], Dy_z[18, 4], Dy_z[19, 4], Dy_z[20, 4], Dy_z[21, 4], Dy_z[1, 5], Dy_z[2, 5], Dy_z[3, 5], Dy_z[4, 5], Dy_z[5, 5], Dy_z[6, 5], Dy_z[7, 5], Dy_z[8, 5], Dy_z[9, 5], Dy_z[10, 5], Dy_z[11, 5], Dy_z[12, 5], Dy_z[13, 5], Dy_z[14, 5], Dy_z[15, 5], Dy_z[16, 5], Dy_z[17, 5], Dy_z[18, 5], Dy_z[19, 5], Dy_z[20, 5], Dy_z[21, 5], Dy_z[1, 6], Dy_z[2, 6], Dy_z[3, 6], Dy_z[4, 6], Dy_z[5, 6], Dy_z[6, 6], Dy_z[7, 6], Dy_z[8, 6], Dy_z[9, 6], Dy_z[10, 6], Dy_z[11, 6], Dy_z[12, 6], Dy_z[13, 6], Dy_z[14, 6], Dy_z[15, 6], Dy_z[16, 6], Dy_z[17, 6], Dy_z[18, 6], Dy_z[19, 6], Dy_z[20, 6], Dy_z[21, 6], Dy_z[1, 7], Dy_z[2, 7], Dy_z[3, 7], Dy_z[4, 7], Dy_z[5, 7], Dy_z[6, 7], Dy_z[7, 7], Dy_z[8, 7], Dy_z[9, 7], Dy_z[10, 7], Dy_z[11, 7], Dy_z[12, 7], Dy_z[13, 7], Dy_z[14, 7], Dy_z[15, 7], Dy_z[16, 7], Dy_z[17, 7], Dy_z[18, 7], Dy_z[19, 7], Dy_z[20, 7], Dy_z[21, 7], Dy_z[1, 8], Dy_z[2, 8], Dy_z[3, 8], Dy_z[4, 8], Dy_z[5, 8], Dy_z[6, 8], Dy_z[7, 8], Dy_z[8, 8], Dy_z[9, 8], Dy_z[10, 8], Dy_z[11, 8], Dy_z[12, 8], Dy_z[13, 8], Dy_z[14, 8], Dy_z[15, 8], Dy_z[16, 8], Dy_z[17, 8], Dy_z[18, 8], Dy_z[19, 8], Dy_z[20, 8], Dy_z[21, 8], Dy_z[1, 9], Dy_z[2, 9], Dy_z[3, 9], Dy_z[4, 9], Dy_z[5, 9], Dy_z[6, 9], Dy_z[7, 9], Dy_z[8, 9], Dy_z[9, 9], Dy_z[10, 9], Dy_z[11, 9], Dy_z[12, 9], Dy_z[13, 9], Dy_z[14, 9], Dy_z[15, 9], Dy_z[16, 9], Dy_z[17, 9], Dy_z[18, 9], Dy_z[19, 9], Dy_z[20, 9], Dy_z[21, 9], Dy_z[1, 10], Dy_z[2, 10], Dy_z[3, 10], Dy_z[4, 10], Dy_z[5, 10], Dy_z[6, 10], Dy_z[7, 10], Dy_z[8, 10], Dy_z[9, 10], Dy_z[10, 10], Dy_z[11, 10], Dy_z[12, 10], Dy_z[13, 10], Dy_z[14, 10], Dy_z[15, 10], Dy_z[16, 10], Dy_z[17, 10], Dy_z[18, 10], Dy_z[19, 10], Dy_z[20, 10], Dy_z[21, 10], Dy_z[1, 11], Dy_z[2, 11], Dy_z[3, 11], Dy_z[4, 11], Dy_z[5, 11], Dy_z[6, 11], Dy_z[7, 11], Dy_z[8, 11], Dy_z[9, 11], Dy_z[10, 11], Dy_z[11, 11], Dy_z[12, 11], Dy_z[13, 11], Dy_z[14, 11], Dy_z[15, 11], Dy_z[16, 11], Dy_z[17, 11], Dy_z[18, 11], Dy_z[19, 11], Dy_z[20, 11], Dy_z[21, 11], Dy_z[1, 12], Dy_z[2, 12], Dy_z[3, 12], Dy_z[4, 12], Dy_z[5, 12], Dy_z[6, 12], Dy_z[7, 12], Dy_z[8, 12], Dy_z[9, 12], Dy_z[10, 12], Dy_z[11, 12], Dy_z[12, 12], Dy_z[13, 12], Dy_z[14, 12], Dy_z[15, 12], Dy_z[16, 12], Dy_z[17, 12], Dy_z[18, 12], Dy_z[19, 12], Dy_z[20, 12], Dy_z[21, 12], Dy_z[1, 13], Dy_z[2, 13], Dy_z[3, 13], Dy_z[4, 13], Dy_z[5, 13], Dy_z[6, 13], Dy_z[7, 13], Dy_z[8, 13], Dy_z[9, 13], Dy_z[10, 13], Dy_z[11, 13], Dy_z[12, 13], Dy_z[13, 13], Dy_z[14, 13], Dy_z[15, 13], Dy_z[16, 13], Dy_z[17, 13], Dy_z[18, 13], Dy_z[19, 13], Dy_z[20, 13], Dy_z[21, 13], Dy_z[1, 14], Dy_z[2, 14], Dy_z[3, 14], Dy_z[4, 14], Dy_z[5, 14], Dy_z[6, 14], Dy_z[7, 14], Dy_z[8, 14], Dy_z[9, 14], Dy_z[10, 14], Dy_z[11, 14], Dy_z[12, 14], Dy_z[13, 14], Dy_z[14, 14], Dy_z[15, 14], Dy_z[16, 14], Dy_z[17, 14], Dy_z[18, 14], Dy_z[19, 14], Dy_z[20, 14], Dy_z[21, 14], Dy_z[1, 15], Dy_z[2, 15], Dy_z[3, 15], Dy_z[4, 15], Dy_z[5, 15], Dy_z[6, 15], Dy_z[7, 15], Dy_z[8, 15], Dy_z[9, 15], Dy_z[10, 15], Dy_z[11, 15], Dy_z[12, 15], Dy_z[13, 15], Dy_z[14, 15], Dy_z[15, 15], Dy_z[16, 15], Dy_z[17, 15], Dy_z[18, 15], Dy_z[19, 15], Dy_z[20, 15], Dy_z[21, 15], Dy_z[1, 16], Dy_z[2, 16], Dy_z[3, 16], Dy_z[4, 16], Dy_z[5, 16], Dy_z[6, 16], Dy_z[7, 16], Dy_z[8, 16], Dy_z[9, 16], Dy_z[10, 16], Dy_z[11, 16], Dy_z[12, 16], Dy_z[13, 16], Dy_z[14, 16], Dy_z[15, 16], Dy_z[16, 16], Dy_z[17, 16], Dy_z[18, 16], Dy_z[19, 16], Dy_z[20, 16], Dy_z[21, 16], Dy_z[1, 17], Dy_z[2, 17], Dy_z[3, 17], Dy_z[4, 17], Dy_z[5, 17], Dy_z[6, 17], Dy_z[7, 17], Dy_z[8, 17], Dy_z[9, 17], Dy_z[10, 17], Dy_z[11, 17], Dy_z[12, 17], Dy_z[13, 17], Dy_z[14, 17], Dy_z[15, 17], Dy_z[16, 17], Dy_z[17, 17], Dy_z[18, 17], Dy_z[19, 17], Dy_z[20, 17], Dy_z[21, 17], Dy_z[1, 18], Dy_z[2, 18], Dy_z[3, 18], Dy_z[4, 18], Dy_z[5, 18], Dy_z[6, 18], Dy_z[7, 18], Dy_z[8, 18], Dy_z[9, 18], Dy_z[10, 18], Dy_z[11, 18], Dy_z[12, 18], Dy_z[13, 18], Dy_z[14, 18], Dy_z[15, 18], Dy_z[16, 18], Dy_z[17, 18], Dy_z[18, 18], Dy_z[19, 18], Dy_z[20, 18], Dy_z[21, 18], Dy_z[1, 19], Dy_z[2, 19], Dy_z[3, 19], Dy_z[4, 19], Dy_z[5, 19], Dy_z[6, 19], Dy_z[7, 19], Dy_z[8, 19], Dy_z[9, 19], Dy_z[10, 19], Dy_z[11, 19], Dy_z[12, 19], Dy_z[13, 19], Dy_z[14, 19], Dy_z[15, 19], Dy_z[16, 19], Dy_z[17, 19], Dy_z[18, 19], Dy_z[19, 19], Dy_z[20, 19], Dy_z[21, 19], Dy_z[1, 20], Dy_z[2, 20], Dy_z[3, 20], Dy_z[4, 20], Dy_z[5, 20], Dy_z[6, 20], Dy_z[7, 20], Dy_z[8, 20], Dy_z[9, 20], Dy_z[10, 20], Dy_z[11, 20], Dy_z[12, 20], Dy_z[13, 20], Dy_z[14, 20], Dy_z[15, 20], Dy_z[16, 20], Dy_z[17, 20], Dy_z[18, 20], Dy_z[19, 20], Dy_z[20, 20], Dy_z[21, 20], Dy_z[1, 21], Dy_z[2, 21], Dy_z[3, 21], Dy_z[4, 21], Dy_z[5, 21], Dy_z[6, 21], Dy_z[7, 21], Dy_z[8, 21], Dy_z[9, 21], Dy_z[10, 21], Dy_z[11, 21], Dy_z[12, 21], Dy_z[13, 21], Dy_z[14, 21], Dy_z[15, 21], Dy_z[16, 21], Dy_z[17, 21], Dy_z[18, 21], Dy_z[19, 21], Dy_z[20, 21], Dy_z[21, 21], z[1, 1], z[2, 1], z[3, 1], z[4, 1], z[5, 1], z[6, 1], z[7, 1], z[8, 1], z[9, 1], z[10, 1], z[11, 1], z[12, 1], z[13, 1], z[14, 1], z[15, 1], z[16, 1], z[17, 1], z[18, 1], z[19, 1], z[20, 1], z[21, 1], z[1, 2], z[2, 2], z[3, 2], z[4, 2], z[5, 2], z[6, 2], z[7, 2], z[8, 2], z[9, 2], z[10, 2], z[11, 2], z[12, 2], z[13, 2], z[14, 2], z[15, 2], z[16, 2], z[17, 2], z[18, 2], z[19, 2], z[20, 2], z[21, 2], z[1, 3], z[2, 3], z[3, 3], z[4, 3], z[5, 3], z[6, 3], z[7, 3], z[8, 3], z[9, 3], z[10, 3], z[11, 3], z[12, 3], z[13, 3], z[14, 3], z[15, 3], z[16, 3], z[17, 3], z[18, 3], z[19, 3], z[20, 3], z[21, 3], z[1, 4], z[2, 4], z[3, 4], z[4, 4], z[5, 4], z[6, 4], z[7, 4], z[8, 4], z[9, 4], z[10, 4], z[11, 4], z[12, 4], z[13, 4], z[14, 4], z[15, 4], z[16, 4], z[17, 4], z[18, 4], z[19, 4], z[20, 4], z[21, 4], z[1, 5], z[2, 5], z[3, 5], z[4, 5], z[5, 5], z[6, 5], z[7, 5], z[8, 5], z[9, 5], z[10, 5], z[11, 5], z[12, 5], z[13, 5], z[14, 5], z[15, 5], z[16, 5], z[17, 5], z[18, 5], z[19, 5], z[20, 5], z[21, 5], z[1, 6], z[2, 6], z[3, 6], z[4, 6], z[5, 6], z[6, 6], z[7, 6], z[8, 6], z[9, 6], z[10, 6], z[11, 6], z[12, 6], z[13, 6], z[14, 6], z[15, 6], z[16, 6], z[17, 6], z[18, 6], z[19, 6], z[20, 6], z[21, 6], z[1, 7], z[2, 7], z[3, 7], z[4, 7], z[5, 7], z[6, 7], z[7, 7], z[8, 7], z[9, 7], z[10, 7], z[11, 7], z[12, 7], z[13, 7], z[14, 7], z[15, 7], z[16, 7], z[17, 7], z[18, 7], z[19, 7], z[20, 7], z[21, 7], z[1, 8], z[2, 8], z[3, 8], z[4, 8], z[5, 8], z[6, 8], z[7, 8], z[8, 8], z[9, 8], z[10, 8], z[11, 8], z[12, 8], z[13, 8], z[14, 8], z[15, 8], z[16, 8], z[17, 8], z[18, 8], z[19, 8], z[20, 8], z[21, 8], z[1, 9], z[2, 9], z[3, 9], z[4, 9], z[5, 9], z[6, 9], z[7, 9], z[8, 9], z[9, 9], z[10, 9], z[11, 9], z[12, 9], z[13, 9], z[14, 9], z[15, 9], z[16, 9], z[17, 9], z[18, 9], z[19, 9], z[20, 9], z[21, 9], z[1, 10], z[2, 10], z[3, 10], z[4, 10], z[5, 10], z[6, 10], z[7, 10], z[8, 10], z[9, 10], z[10, 10], z[11, 10], z[12, 10], z[13, 10], z[14, 10], z[15, 10], z[16, 10], z[17, 10], z[18, 10], z[19, 10], z[20, 10], z[21, 10], z[1, 11], z[2, 11], z[3, 11], z[4, 11], z[5, 11], z[6, 11], z[7, 11], z[8, 11], z[9, 11], z[10, 11], z[11, 11], z[12, 11], z[13, 11], z[14, 11], z[15, 11], z[16, 11], z[17, 11], z[18, 11], z[19, 11], z[20, 11], z[21, 11], z[1, 12], z[2, 12], z[3, 12], z[4, 12], z[5, 12], z[6, 12], z[7, 12], z[8, 12], z[9, 12], z[10, 12], z[11, 12], z[12, 12], z[13, 12], z[14, 12], z[15, 12], z[16, 12], z[17, 12], z[18, 12], z[19, 12], z[20, 12], z[21, 12], z[1, 13], z[2, 13], z[3, 13], z[4, 13], z[5, 13], z[6, 13], z[7, 13], z[8, 13], z[9, 13], z[10, 13], z[11, 13], z[12, 13], z[13, 13], z[14, 13], z[15, 13], z[16, 13], z[17, 13], z[18, 13], z[19, 13], z[20, 13], z[21, 13], z[1, 14], z[2, 14], z[3, 14], z[4, 14], z[5, 14], z[6, 14], z[7, 14], z[8, 14], z[9, 14], z[10, 14], z[11, 14], z[12, 14], z[13, 14], z[14, 14], z[15, 14], z[16, 14], z[17, 14], z[18, 14], z[19, 14], z[20, 14], z[21, 14], z[1, 15], z[2, 15], z[3, 15], z[4, 15], z[5, 15], z[6, 15], z[7, 15], z[8, 15], z[9, 15], z[10, 15], z[11, 15], z[12, 15], z[13, 15], z[14, 15], z[15, 15], z[16, 15], z[17, 15], z[18, 15], z[19, 15], z[20, 15], z[21, 15], z[1, 16], z[2, 16], z[3, 16], z[4, 16], z[5, 16], z[6, 16], z[7, 16], z[8, 16], z[9, 16], z[10, 16], z[11, 16], z[12, 16], z[13, 16], z[14, 16], z[15, 16], z[16, 16], z[17, 16], z[18, 16], z[19, 16], z[20, 16], z[21, 16], z[1, 17], z[2, 17], z[3, 17], z[4, 17], z[5, 17], z[6, 17], z[7, 17], z[8, 17], z[9, 17], z[10, 17], z[11, 17], z[12, 17], z[13, 17], z[14, 17], z[15, 17], z[16, 17], z[17, 17], z[18, 17], z[19, 17], z[20, 17], z[21, 17], z[1, 18], z[2, 18], z[3, 18], z[4, 18], z[5, 18], z[6, 18], z[7, 18], z[8, 18], z[9, 18], z[10, 18], z[11, 18], z[12, 18], z[13, 18], z[14, 18], z[15, 18], z[16, 18], z[17, 18], z[18, 18], z[19, 18], z[20, 18], z[21, 18], z[1, 19], z[2, 19], z[3, 19], z[4, 19], z[5, 19], z[6, 19], z[7, 19], z[8, 19], z[9, 19], z[10, 19], z[11, 19], z[12, 19], z[13, 19], z[14, 19], z[15, 19], z[16, 19], z[17, 19], z[18, 19], z[19, 19], z[20, 19], z[21, 19], z[1, 20], z[2, 20], z[3, 20], z[4, 20], z[5, 20], z[6, 20], z[7, 20], z[8, 20], z[9, 20], z[10, 20], z[11, 20], z[12, 20], z[13, 20], z[14, 20], z[15, 20], z[16, 20], z[17, 20], z[18, 20], z[19, 20], z[20, 20], z[21, 20], z[1, 21], z[2, 21], z[3, 21], z[4, 21], z[5, 21], z[6, 21], z[7, 21], z[8, 21], z[9, 21], z[10, 21], z[11, 21], z[12, 21], z[13, 21], z[14, 21], z[15, 21], z[16, 21], z[17, 21], z[18, 21], z[19, 21], z[20, 21], z[21, 21]]
julia> states(simpsys)
722-element Vector{SymbolicUtils.Symbolic{Real}}:
Dy_z[2, 2]
Dy_z[3, 2]
Dy_z[4, 2]
Dy_z[5, 2]
Dy_z[6, 2]
⋮
var"Dy_z[1720]ˍnothing"
var"Dy_z[1820]ˍnothing"
var"Dy_z[1920]ˍnothing"
var"Dy_z[2020]ˍnothing"
julia> println(states(simpsys))
SymbolicUtils.Symbolic{Real}[Dy_z[2, 2], Dy_z[3, 2], Dy_z[4, 2], Dy_z[5, 2], Dy_z[6, 2], Dy_z[7, 2], Dy_z[8, 2], Dy_z[9, 2], Dy_z[10, 2], Dy_z[11, 2], Dy_z[12, 2], Dy_z[13, 2], Dy_z[14, 2], Dy_z[15, 2], Dy_z[16, 2], Dy_z[17, 2], Dy_z[18, 2], Dy_z[19, 2], Dy_z[20, 2], Dy_z[2, 3], Dy_z[3, 3], Dy_z[4, 3], Dy_z[5, 3], Dy_z[6, 3], Dy_z[7, 3], Dy_z[8, 3], Dy_z[9, 3], Dy_z[10, 3], Dy_z[11, 3], Dy_z[12, 3], Dy_z[13, 3], Dy_z[14, 3], Dy_z[15, 3], Dy_z[16, 3], Dy_z[17, 3], Dy_z[18, 3], Dy_z[19, 3], Dy_z[20, 3], Dy_z[2, 4], Dy_z[3, 4], Dy_z[4, 4], Dy_z[5, 4], Dy_z[6, 4], Dy_z[7, 4], Dy_z[8, 4], Dy_z[9, 4], Dy_z[10, 4], Dy_z[11, 4], Dy_z[12, 4], Dy_z[13, 4], Dy_z[14, 4], Dy_z[15, 4], Dy_z[16, 4], Dy_z[17, 4], Dy_z[18, 4], Dy_z[19, 4], Dy_z[20, 4], Dy_z[2, 5], Dy_z[3, 5], Dy_z[4, 5], Dy_z[5, 5], Dy_z[6, 5], Dy_z[7, 5], Dy_z[8, 5], Dy_z[9, 5], Dy_z[10, 5], Dy_z[11, 5], Dy_z[12, 5], Dy_z[13, 5], Dy_z[14, 5], Dy_z[15, 5], Dy_z[16, 5], Dy_z[17, 5], Dy_z[18, 5], Dy_z[19, 5], Dy_z[20, 5], Dy_z[2, 6], Dy_z[3, 6], Dy_z[4, 6], Dy_z[5, 6], Dy_z[6, 6], Dy_z[7, 6], Dy_z[8, 6], Dy_z[9, 6], Dy_z[10, 6], Dy_z[11, 6], Dy_z[12, 6], Dy_z[13, 6], Dy_z[14, 6], Dy_z[15, 6], Dy_z[16, 6], Dy_z[17, 6], Dy_z[18, 6], Dy_z[19, 6], Dy_z[20, 6], Dy_z[2, 7], Dy_z[3, 7], Dy_z[4, 7], Dy_z[5, 7], Dy_z[6, 7], Dy_z[7, 7], Dy_z[8, 7], Dy_z[9, 7], Dy_z[10, 7], Dy_z[11, 7], Dy_z[12, 7], Dy_z[13, 7], Dy_z[14, 7], Dy_z[15, 7], Dy_z[16, 7], Dy_z[17, 7], Dy_z[18, 7], Dy_z[19, 7], Dy_z[20, 7], Dy_z[2, 8], Dy_z[3, 8], Dy_z[4, 8], Dy_z[5, 8], Dy_z[6, 8], Dy_z[7, 8], Dy_z[8, 8], Dy_z[9, 8], Dy_z[10, 8], Dy_z[11, 8], Dy_z[12, 8], Dy_z[13, 8], Dy_z[14, 8], Dy_z[15, 8], Dy_z[16, 8], Dy_z[17, 8], Dy_z[18, 8], Dy_z[19, 8], Dy_z[20, 8], Dy_z[2, 9], Dy_z[3, 9], Dy_z[4, 9], Dy_z[5, 9], Dy_z[6, 9], Dy_z[7, 9], Dy_z[8, 9], Dy_z[9, 9], Dy_z[10, 9], Dy_z[11, 9], Dy_z[12, 9], Dy_z[13, 9], Dy_z[14, 9], Dy_z[15, 9], Dy_z[16, 9], Dy_z[17, 9], Dy_z[18, 9], Dy_z[19, 9], Dy_z[20, 9], Dy_z[2, 10], Dy_z[3, 10], Dy_z[4, 10], Dy_z[5, 10], Dy_z[6, 10], Dy_z[7, 10], Dy_z[8, 10], Dy_z[9, 10], Dy_z[10, 10], Dy_z[11, 10], Dy_z[12, 10], Dy_z[13, 10], Dy_z[14, 10], Dy_z[15, 10], Dy_z[16, 10], Dy_z[17, 10], Dy_z[18, 10], Dy_z[19, 10], Dy_z[20, 10], Dy_z[2, 11], Dy_z[3, 11], Dy_z[4, 11], Dy_z[5, 11], Dy_z[6, 11], Dy_z[7, 11], Dy_z[8, 11], Dy_z[9, 11], Dy_z[10, 11], Dy_z[11, 11], Dy_z[12, 11], Dy_z[13, 11], Dy_z[14, 11], Dy_z[15, 11], Dy_z[16, 11], Dy_z[17, 11], Dy_z[18, 11], Dy_z[19, 11], Dy_z[20, 11], Dy_z[2, 12], Dy_z[3, 12], Dy_z[4, 12], Dy_z[5, 12], Dy_z[6, 12], Dy_z[7, 12], Dy_z[8, 12], Dy_z[9, 12], Dy_z[10, 12], Dy_z[11, 12], Dy_z[12, 12], Dy_z[13, 12], Dy_z[14, 12], Dy_z[15, 12], Dy_z[16, 12], Dy_z[17, 12], Dy_z[18, 12], Dy_z[19, 12], Dy_z[20, 12], Dy_z[2, 13], Dy_z[3, 13], Dy_z[4, 13], Dy_z[5, 13], Dy_z[6, 13], Dy_z[7, 13], Dy_z[8, 13], Dy_z[9, 13], Dy_z[10, 13], Dy_z[11, 13], Dy_z[12, 13], Dy_z[13, 13], Dy_z[14, 13], Dy_z[15, 13], Dy_z[16, 13], Dy_z[17, 13], Dy_z[18, 13], Dy_z[19, 13], Dy_z[20, 13], Dy_z[2, 14], Dy_z[3, 14], Dy_z[4, 14], Dy_z[5, 14], Dy_z[6, 14], Dy_z[7, 14], Dy_z[8, 14], Dy_z[9, 14], Dy_z[10, 14], Dy_z[11, 14], Dy_z[12, 14], Dy_z[13, 14], Dy_z[14, 14], Dy_z[15, 14], Dy_z[16, 14], Dy_z[17, 14], Dy_z[18, 14], Dy_z[19, 14], Dy_z[20, 14], Dy_z[2, 15], Dy_z[3, 15], Dy_z[4, 15], Dy_z[5, 15], Dy_z[6, 15], Dy_z[7, 15], Dy_z[8, 15], Dy_z[9, 15], Dy_z[10, 15], Dy_z[11, 15], Dy_z[12, 15], Dy_z[13, 15], Dy_z[14, 15], Dy_z[15, 15], Dy_z[16, 15], Dy_z[17, 15], Dy_z[18, 15], Dy_z[19, 15], Dy_z[20, 15], Dy_z[2, 16], Dy_z[3, 16], Dy_z[4, 16], Dy_z[5, 16], Dy_z[6, 16], Dy_z[7, 16], Dy_z[8, 16], Dy_z[9, 16], Dy_z[10, 16], Dy_z[11, 16], Dy_z[12, 16], Dy_z[13, 16], Dy_z[14, 16], Dy_z[15, 16], Dy_z[16, 16], Dy_z[17, 16], Dy_z[18, 16], Dy_z[19, 16], Dy_z[20, 16], Dy_z[2, 17], Dy_z[3, 17], Dy_z[4, 17], Dy_z[5, 17], Dy_z[6, 17], Dy_z[7, 17], Dy_z[8, 17], Dy_z[9, 17], Dy_z[10, 17], Dy_z[11, 17], Dy_z[12, 17], Dy_z[13, 17], Dy_z[14, 17], Dy_z[15, 17], Dy_z[16, 17], Dy_z[17, 17], Dy_z[18, 17], Dy_z[19, 17], Dy_z[20, 17], Dy_z[2, 18], Dy_z[3, 18], Dy_z[4, 18], Dy_z[5, 18], Dy_z[6, 18], Dy_z[7, 18], Dy_z[8, 18], Dy_z[9, 18], Dy_z[10, 18], Dy_z[11, 18], Dy_z[12, 18], Dy_z[13, 18], Dy_z[14, 18], Dy_z[15, 18], Dy_z[16, 18], Dy_z[17, 18], Dy_z[18, 18], Dy_z[19, 18], Dy_z[20, 18], Dy_z[2, 19], Dy_z[3, 19], Dy_z[4, 19], Dy_z[5, 19], Dy_z[6, 19], Dy_z[7, 19], Dy_z[8, 19], Dy_z[9, 19], Dy_z[10, 19], Dy_z[11, 19], Dy_z[12, 19], Dy_z[13, 19], Dy_z[14, 19], Dy_z[15, 19], Dy_z[16, 19], Dy_z[17, 19], Dy_z[18, 19], Dy_z[19, 19], Dy_z[20, 19], Dy_z[2, 20], Dy_z[3, 20], Dy_z[4, 20], Dy_z[5, 20], Dy_z[6, 20], Dy_z[7, 20], Dy_z[8, 20], Dy_z[9, 20], Dy_z[10, 20], Dy_z[11, 20], Dy_z[12, 20], Dy_z[13, 20], Dy_z[14, 20], Dy_z[15, 20], Dy_z[16, 20], Dy_z[17, 20], Dy_z[18, 20], Dy_z[19, 20], Dy_z[20, 20], var"Dy_z[22]ˍnothing", var"Dy_z[32]ˍnothing", var"Dy_z[42]ˍnothing", var"Dy_z[52]ˍnothing", var"Dy_z[62]ˍnothing", var"Dy_z[72]ˍnothing", var"Dy_z[82]ˍnothing", var"Dy_z[92]ˍnothing", var"Dy_z[102]ˍnothing", var"Dy_z[112]ˍnothing", var"Dy_z[122]ˍnothing", var"Dy_z[132]ˍnothing", var"Dy_z[142]ˍnothing", var"Dy_z[152]ˍnothing", var"Dy_z[162]ˍnothing", var"Dy_z[172]ˍnothing", var"Dy_z[182]ˍnothing", var"Dy_z[192]ˍnothing", var"Dy_z[202]ˍnothing", var"Dy_z[23]ˍnothing", var"Dy_z[33]ˍnothing", var"Dy_z[43]ˍnothing", var"Dy_z[53]ˍnothing", var"Dy_z[63]ˍnothing", var"Dy_z[73]ˍnothing", var"Dy_z[83]ˍnothing", var"Dy_z[93]ˍnothing", var"Dy_z[103]ˍnothing", var"Dy_z[113]ˍnothing", var"Dy_z[123]ˍnothing", var"Dy_z[133]ˍnothing", var"Dy_z[143]ˍnothing", var"Dy_z[153]ˍnothing", var"Dy_z[163]ˍnothing", var"Dy_z[173]ˍnothing", var"Dy_z[183]ˍnothing", var"Dy_z[193]ˍnothing", var"Dy_z[203]ˍnothing", var"Dy_z[24]ˍnothing", var"Dy_z[34]ˍnothing", var"Dy_z[44]ˍnothing", var"Dy_z[54]ˍnothing", var"Dy_z[64]ˍnothing", var"Dy_z[74]ˍnothing", var"Dy_z[84]ˍnothing", var"Dy_z[94]ˍnothing", var"Dy_z[104]ˍnothing", var"Dy_z[114]ˍnothing", var"Dy_z[124]ˍnothing", var"Dy_z[134]ˍnothing", var"Dy_z[144]ˍnothing", var"Dy_z[154]ˍnothing", var"Dy_z[164]ˍnothing", var"Dy_z[174]ˍnothing", var"Dy_z[184]ˍnothing", var"Dy_z[194]ˍnothing", var"Dy_z[204]ˍnothing", var"Dy_z[25]ˍnothing", var"Dy_z[35]ˍnothing", var"Dy_z[45]ˍnothing", var"Dy_z[55]ˍnothing", var"Dy_z[65]ˍnothing", var"Dy_z[75]ˍnothing", var"Dy_z[85]ˍnothing", var"Dy_z[95]ˍnothing", var"Dy_z[105]ˍnothing", var"Dy_z[115]ˍnothing", var"Dy_z[125]ˍnothing", var"Dy_z[135]ˍnothing", var"Dy_z[145]ˍnothing", var"Dy_z[155]ˍnothing", var"Dy_z[165]ˍnothing", var"Dy_z[175]ˍnothing", var"Dy_z[185]ˍnothing", var"Dy_z[195]ˍnothing", var"Dy_z[205]ˍnothing", var"Dy_z[26]ˍnothing", var"Dy_z[36]ˍnothing", var"Dy_z[46]ˍnothing", var"Dy_z[56]ˍnothing", var"Dy_z[66]ˍnothing", var"Dy_z[76]ˍnothing", var"Dy_z[86]ˍnothing", var"Dy_z[96]ˍnothing", var"Dy_z[106]ˍnothing", var"Dy_z[116]ˍnothing", var"Dy_z[126]ˍnothing", var"Dy_z[136]ˍnothing", var"Dy_z[146]ˍnothing", var"Dy_z[156]ˍnothing", var"Dy_z[166]ˍnothing", var"Dy_z[176]ˍnothing", var"Dy_z[186]ˍnothing", var"Dy_z[196]ˍnothing", var"Dy_z[206]ˍnothing", var"Dy_z[27]ˍnothing", var"Dy_z[37]ˍnothing", var"Dy_z[47]ˍnothing", var"Dy_z[57]ˍnothing", var"Dy_z[67]ˍnothing", var"Dy_z[77]ˍnothing", var"Dy_z[87]ˍnothing", var"Dy_z[97]ˍnothing", var"Dy_z[107]ˍnothing", var"Dy_z[117]ˍnothing", var"Dy_z[127]ˍnothing", var"Dy_z[137]ˍnothing", var"Dy_z[147]ˍnothing", var"Dy_z[157]ˍnothing", var"Dy_z[167]ˍnothing", var"Dy_z[177]ˍnothing", var"Dy_z[187]ˍnothing", var"Dy_z[197]ˍnothing", var"Dy_z[207]ˍnothing", var"Dy_z[28]ˍnothing", var"Dy_z[38]ˍnothing", var"Dy_z[48]ˍnothing", var"Dy_z[58]ˍnothing", var"Dy_z[68]ˍnothing", var"Dy_z[78]ˍnothing", var"Dy_z[88]ˍnothing", var"Dy_z[98]ˍnothing", var"Dy_z[108]ˍnothing", var"Dy_z[118]ˍnothing", var"Dy_z[128]ˍnothing", var"Dy_z[138]ˍnothing", var"Dy_z[148]ˍnothing", var"Dy_z[158]ˍnothing", var"Dy_z[168]ˍnothing", var"Dy_z[178]ˍnothing", var"Dy_z[188]ˍnothing", var"Dy_z[198]ˍnothing", var"Dy_z[208]ˍnothing", var"Dy_z[29]ˍnothing", var"Dy_z[39]ˍnothing", var"Dy_z[49]ˍnothing", var"Dy_z[59]ˍnothing", var"Dy_z[69]ˍnothing", var"Dy_z[79]ˍnothing", var"Dy_z[89]ˍnothing", var"Dy_z[99]ˍnothing", var"Dy_z[109]ˍnothing", var"Dy_z[119]ˍnothing", var"Dy_z[129]ˍnothing", var"Dy_z[139]ˍnothing", var"Dy_z[149]ˍnothing", var"Dy_z[159]ˍnothing", var"Dy_z[169]ˍnothing", var"Dy_z[179]ˍnothing", var"Dy_z[189]ˍnothing", var"Dy_z[199]ˍnothing", var"Dy_z[209]ˍnothing", var"Dy_z[210]ˍnothing", var"Dy_z[310]ˍnothing", var"Dy_z[410]ˍnothing", var"Dy_z[510]ˍnothing", var"Dy_z[610]ˍnothing", var"Dy_z[710]ˍnothing", var"Dy_z[810]ˍnothing", var"Dy_z[910]ˍnothing", var"Dy_z[1010]ˍnothing", var"Dy_z[1110]ˍnothing", var"Dy_z[1210]ˍnothing", var"Dy_z[1310]ˍnothing", var"Dy_z[1410]ˍnothing", var"Dy_z[1510]ˍnothing", var"Dy_z[1610]ˍnothing", var"Dy_z[1710]ˍnothing", var"Dy_z[1810]ˍnothing", var"Dy_z[1910]ˍnothing", var"Dy_z[2010]ˍnothing", var"Dy_z[211]ˍnothing", var"Dy_z[311]ˍnothing", var"Dy_z[411]ˍnothing", var"Dy_z[511]ˍnothing", var"Dy_z[611]ˍnothing", var"Dy_z[711]ˍnothing", var"Dy_z[811]ˍnothing", var"Dy_z[911]ˍnothing", var"Dy_z[1011]ˍnothing", var"Dy_z[1111]ˍnothing", var"Dy_z[1211]ˍnothing", var"Dy_z[1311]ˍnothing", var"Dy_z[1411]ˍnothing", var"Dy_z[1511]ˍnothing", var"Dy_z[1611]ˍnothing", var"Dy_z[1711]ˍnothing", var"Dy_z[1811]ˍnothing", var"Dy_z[1911]ˍnothing", var"Dy_z[2011]ˍnothing", var"Dy_z[212]ˍnothing", var"Dy_z[312]ˍnothing", var"Dy_z[412]ˍnothing", var"Dy_z[512]ˍnothing", var"Dy_z[612]ˍnothing", var"Dy_z[712]ˍnothing", var"Dy_z[812]ˍnothing", var"Dy_z[912]ˍnothing", var"Dy_z[1012]ˍnothing", var"Dy_z[1112]ˍnothing", var"Dy_z[1212]ˍnothing", var"Dy_z[1312]ˍnothing", var"Dy_z[1412]ˍnothing", var"Dy_z[1512]ˍnothing", var"Dy_z[1612]ˍnothing", var"Dy_z[1712]ˍnothing", var"Dy_z[1812]ˍnothing", var"Dy_z[1912]ˍnothing", var"Dy_z[2012]ˍnothing", var"Dy_z[213]ˍnothing", var"Dy_z[313]ˍnothing", var"Dy_z[413]ˍnothing", var"Dy_z[513]ˍnothing", var"Dy_z[613]ˍnothing", var"Dy_z[713]ˍnothing", var"Dy_z[813]ˍnothing", var"Dy_z[913]ˍnothing", var"Dy_z[1013]ˍnothing", var"Dy_z[1113]ˍnothing", var"Dy_z[1213]ˍnothing", var"Dy_z[1313]ˍnothing", var"Dy_z[1413]ˍnothing", var"Dy_z[1513]ˍnothing", var"Dy_z[1613]ˍnothing", var"Dy_z[1713]ˍnothing", var"Dy_z[1813]ˍnothing", var"Dy_z[1913]ˍnothing", var"Dy_z[2013]ˍnothing", var"Dy_z[214]ˍnothing", var"Dy_z[314]ˍnothing", var"Dy_z[414]ˍnothing", var"Dy_z[514]ˍnothing", var"Dy_z[614]ˍnothing", var"Dy_z[714]ˍnothing", var"Dy_z[814]ˍnothing", var"Dy_z[914]ˍnothing", var"Dy_z[1014]ˍnothing", var"Dy_z[1114]ˍnothing", var"Dy_z[1214]ˍnothing", var"Dy_z[1314]ˍnothing", var"Dy_z[1414]ˍnothing", var"Dy_z[1514]ˍnothing", var"Dy_z[1614]ˍnothing", var"Dy_z[1714]ˍnothing", var"Dy_z[1814]ˍnothing", var"Dy_z[1914]ˍnothing", var"Dy_z[2014]ˍnothing", var"Dy_z[215]ˍnothing", var"Dy_z[315]ˍnothing", var"Dy_z[415]ˍnothing", var"Dy_z[515]ˍnothing", var"Dy_z[615]ˍnothing", var"Dy_z[715]ˍnothing", var"Dy_z[815]ˍnothing", var"Dy_z[915]ˍnothing", var"Dy_z[1015]ˍnothing", var"Dy_z[1115]ˍnothing", var"Dy_z[1215]ˍnothing", var"Dy_z[1315]ˍnothing", var"Dy_z[1415]ˍnothing", var"Dy_z[1515]ˍnothing", var"Dy_z[1615]ˍnothing", var"Dy_z[1715]ˍnothing", var"Dy_z[1815]ˍnothing", var"Dy_z[1915]ˍnothing", var"Dy_z[2015]ˍnothing", var"Dy_z[216]ˍnothing", var"Dy_z[316]ˍnothing", var"Dy_z[416]ˍnothing", var"Dy_z[516]ˍnothing", var"Dy_z[616]ˍnothing", var"Dy_z[716]ˍnothing", var"Dy_z[816]ˍnothing", var"Dy_z[916]ˍnothing", var"Dy_z[1016]ˍnothing", var"Dy_z[1116]ˍnothing", var"Dy_z[1216]ˍnothing", var"Dy_z[1316]ˍnothing", var"Dy_z[1416]ˍnothing", var"Dy_z[1516]ˍnothing", var"Dy_z[1616]ˍnothing", var"Dy_z[1716]ˍnothing", var"Dy_z[1816]ˍnothing", var"Dy_z[1916]ˍnothing", var"Dy_z[2016]ˍnothing", var"Dy_z[217]ˍnothing", var"Dy_z[317]ˍnothing", var"Dy_z[417]ˍnothing", var"Dy_z[517]ˍnothing", var"Dy_z[617]ˍnothing", var"Dy_z[717]ˍnothing", var"Dy_z[817]ˍnothing", var"Dy_z[917]ˍnothing", var"Dy_z[1017]ˍnothing", var"Dy_z[1117]ˍnothing", var"Dy_z[1217]ˍnothing", var"Dy_z[1317]ˍnothing", var"Dy_z[1417]ˍnothing", var"Dy_z[1517]ˍnothing", var"Dy_z[1617]ˍnothing", var"Dy_z[1717]ˍnothing", var"Dy_z[1817]ˍnothing", var"Dy_z[1917]ˍnothing", var"Dy_z[2017]ˍnothing", var"Dy_z[218]ˍnothing", var"Dy_z[318]ˍnothing", var"Dy_z[418]ˍnothing", var"Dy_z[518]ˍnothing", var"Dy_z[618]ˍnothing", var"Dy_z[718]ˍnothing", var"Dy_z[818]ˍnothing", var"Dy_z[918]ˍnothing", var"Dy_z[1018]ˍnothing", var"Dy_z[1118]ˍnothing", var"Dy_z[1218]ˍnothing", var"Dy_z[1318]ˍnothing", var"Dy_z[1418]ˍnothing", var"Dy_z[1518]ˍnothing", var"Dy_z[1618]ˍnothing", var"Dy_z[1718]ˍnothing", var"Dy_z[1818]ˍnothing", var"Dy_z[1918]ˍnothing", var"Dy_z[2018]ˍnothing", var"Dy_z[219]ˍnothing", var"Dy_z[319]ˍnothing", var"Dy_z[419]ˍnothing", var"Dy_z[519]ˍnothing", var"Dy_z[619]ˍnothing", var"Dy_z[719]ˍnothing", var"Dy_z[819]ˍnothing", var"Dy_z[919]ˍnothing", var"Dy_z[1019]ˍnothing", var"Dy_z[1119]ˍnothing", var"Dy_z[1219]ˍnothing", var"Dy_z[1319]ˍnothing", var"Dy_z[1419]ˍnothing", var"Dy_z[1519]ˍnothing", var"Dy_z[1619]ˍnothing", var"Dy_z[1719]ˍnothing", var"Dy_z[1819]ˍnothing", var"Dy_z[1919]ˍnothing", var"Dy_z[2019]ˍnothing", var"Dy_z[220]ˍnothing", var"Dy_z[320]ˍnothing", var"Dy_z[420]ˍnothing", var"Dy_z[520]ˍnothing", var"Dy_z[620]ˍnothing", var"Dy_z[720]ˍnothing", var"Dy_z[820]ˍnothing", var"Dy_z[920]ˍnothing", var"Dy_z[1020]ˍnothing", var"Dy_z[1120]ˍnothing", var"Dy_z[1220]ˍnothing", var"Dy_z[1320]ˍnothing", var"Dy_z[1420]ˍnothing", var"Dy_z[1520]ˍnothing", var"Dy_z[1620]ˍnothing", var"Dy_z[1720]ˍnothing", var"Dy_z[1820]ˍnothing", var"Dy_z[1920]ˍnothing", var"Dy_z[2020]ˍnothing"]
@YingboMa I think the dummy derivative pass is being applied on NonlinearSystems and that causes this oddity?