Fracture_Detection_Improved_YOLOv8
Fracture_Detection_Improved_YOLOv8 copied to clipboard
YOLOv8-AM: YOLOv8 with Attention Mechanisms for Pediatric Wrist Fracture Detection
YOLOv8-AM for Fracture Detection
YOLOv8-AM: YOLOv8 with Attention Mechanisms for Pediatric Wrist Fracture Detection
Architecture
Performance
| Model | Test Size | Param. | FLOPs | F1 Score | AP50val | AP50-95val | Speed |
|---|---|---|---|---|---|---|---|
| YOLOv8 | 1024 | 43.61M | 164.9G | 0.62 | 63.58% | 40.40% | 7.7ms |
| YOLOv8+SA | 1024 | 43.64M | 165.4G | 0.63 | 64.25% | 41.64% | 8.0ms |
| YOLOv8+ECA | 1024 | 43.64M | 165.5G | 0.65 | 64.24% | 41.94% | 7.7ms |
| YOLOv8+GAM | 1024 | 49.29M | 183.5G | 0.65 | 64.26% | 41.00% | 12.7ms |
| YOLOv8+ResGAM | 1024 | 49.29M | 183.5G | 0.64 | 64.98% | 41.75% | 18.1ms |
| YOLOv8+ResCBAM | 1024 | 53.87M | 196.2G | 0.64 | 65.78% | 42.16% | 8.7ms |
Citation
If you find our paper useful in your research, please consider citing:
@article{chien2024yolov8am,
title={YOLOv8-AM: YOLOv8 with Attention Mechanisms for Pediatric Wrist Fracture Detection},
author={Chun-Tse Chien and Rui-Yang Ju and Kuang-Yi Chou and Enkaer Xieerke and Jen-Shiun Chiang},
journal={arXiv preprint arXiv:2402.09329},
year={2024}
}
Requirements
- Linux (Ubuntu)
- Python = 3.9
- Pytorch = 1.13.1
- NVIDIA GPU + CUDA CuDNN
Environment
pip install -r requirements.txt
Dataset
Download the dataset
- You can download the GRAZPEDWRI-DX Dataset on this Link.
Split the dataset
-
To split the dataset into training set, validation set, and test set, you should first put the image and annotatation into
./GRAZPEDWRI-DX/data/images, and./GRAZPEDWRI-DX/data/labels. -
And then you can split the dataset as the following step:
python split.py -
The dataset is divided into training, validation, and testing set (70-20-10 %) according to the key
patient_idstored indataset.csv. The script then will move the files into the relative folder as it is represented here below.GRAZPEDWRI-DX └── data ├── meta.yaml ├── images │ ├── train │ │ ├── train_img1.png │ │ └── ... │ ├── valid │ │ ├── valid_img1.png │ │ └── ... │ └── test │ ├── test_img1.png │ └── ... └── labels ├── train │ ├── train_annotation1.txt │ └── ... ├── valid │ ├── valid_annotation1.txt │ └── ... └── test ├── test_annotation1.txt └── ...
The script will create 3 files: train_data.csv, valid_data.csv, and test_data.csv with the same structure of dataset.csv.
Data Augmentation
- Data augmentation of the training set using the addWeighted function doubles the size of the training set.
python imgaug.py --input_img /path/to/input/train/ --output_img /path/to/output/train/ --input_label /path/to/input/labels/ --output_label /path/to/output/labels/
For example:
python imgaug.py --input_img ./GRAZPEDWRI-DX/data/images/train/ --output_img ./GRAZPEDWRI-DX/data/images/train_aug/ --input_label ./GRAZPEDWRI-DX/data/labels/train/ --output_label ./GRAZPEDWRI-DX/data/labels/train_aug/
-
The path of the processed file is shown below:
GRAZPEDWRI-DX └── data ├── meta.yaml ├── images │ ├── train │ │ ├── train_img1.png │ │ └── ... │ ├── train_aug │ │ ├── train_aug_img1.png │ │ └── ... │ ├── valid │ │ ├── valid_img1.png │ │ └── ... │ └── test │ ├── test_img1.png │ └── ... └── labels ├── train │ ├── train_annotation1.txt │ └── ... ├── train_aug │ ├── train_aug_annotation1.txt │ └── ... ├── valid │ ├── valid_annotation1.txt │ └── ... └── test ├── test_annotation1.txt └── ...
Methodology
- We have modified the model architecture of YOLOv8 by adding four types of attention modules, including Shuffle Attention (SA), Efficient Channel Attention (ECA), Global Attention Mechanism (GAM), and ResBlock Convolutional Block Attention Module (ResCBAM).
Train & Validate
- We have provided a training set, test set and validation set containing a single image that you can run directly by following the steps in the example below.
- Before training the model, make sure the path to the data in the
./GRAZPEDWRI-DX/data/meta.yamlfile is correct.
# patch: /path/to/GRAZPEDWRI-DX/data
path: 'E:/GRAZPEDWRI-DX/data'
train: 'images/train_aug'
val: 'images/valid'
test: 'images/test'
- Arguments
You can set the value in the ./ultralytics/cfg/default.yaml.
| Key | Value | Description |
|---|---|---|
| model | None | path to model file, i.e. yolov8m.yaml, yolov8m_ECA.yaml |
| data | None | path to data file, i.e. coco128.yaml, meta.yaml |
| epochs | 100 | number of epochs to train for, i.e. 100, 150 |
| patience | 50 | epochs to wait for no observable improvement for early stopping of training |
| batch | 16 | number of images per batch (-1 for AutoBatch), i.e. 16, 32, 64 |
| imgsz | 640 | size of input images as integer, i.e. 640, 1024 |
| save | True | save train checkpoints and predict results |
| device | 0 | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
| workers | 8 | number of worker threads for data loading (per RANK if DDP) |
| pretrained | True | (bool or str) whether to use a pretrained model (bool) or a model to load weights from (str) |
| optimizer | 'auto' | optimizer to use, choices=SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto |
| resume | False | resume training from last checkpoint |
| lr0 | 0.01 | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| momentum | 0.937 | SGD momentum/Adam beta1 |
| weight_decay | 0.0005 | optimizer weight decay 5e-4 |
| val | True | validate/test during training |
- Example Train & Val Steps (yolov8m):
python start_train.py --model ./ultralytics/cfg/models/v8/yolov8m.yaml --data_dir ./GRAZPEDWRI-DX/data/meta.yaml
- Example Train & Val Steps (yolov8m_ECA):
python start_train.py --model ./ultralytics/cfg/models/v8/yolov8m_ECA.yaml --data_dir ./GRAZPEDWRI-DX/data/meta.yaml