OpenAssistant
OpenAssistant copied to clipboard
LLM as Agent
OpenAssistant
Quick Experience
darkassistant is the new version(the task will be completed by agents):
darkassistant app
Features
Let's ask the assistant first🤔:
So this project encompasses the following features:
1. Rapid Conversion of LLM to Agent🤖
Effortlessly transform your Language Model (LLM) into an Agent.
2. LLM Proficiency Testing Tool🛠️
Explore and evaluate the capabilities of your Language Model through the integrated testing tool.
3. Open Assistant WebUI
Experience the convenience of the Open Assistant Web User Interface (WebUI).
Watch the demo(Vicuna v1.5)
Everyone have their own AI assistant
![]() |
![]() |
|---|---|
![]() |
![]() |
Support models
models on huggingface:
- vicuna
- airoboros
- koala
- alpaca
- chatglm
- chatglm2
- dolly_v2
- oasst_pythia
- oasst_llama
- tulu
- stablelm
- baize
- rwkv
- openbuddy
- phoenix
- claude
- mpt-7b-chat
- mpt-30b-chat
- mpt-30b-instruct
- bard
- billa
- redpajama-incite
- h2ogpt
- Robin
- snoozy
- manticore
- falcon
- polyglot_changgpt
- tigerbot
- xgen
- internlm-chat
- starchat
- baichuan-chat
- llama-2
- cutegpt
- open-orca
- qwen-7b-chat
- aquila-chat
- ...
How to use
1. Installation
git clone https://github.com/Qiyuan-Ge/OpenAssistant.git
cd OpenAssistant
pip install -r requirements.txt
2. Starting the server
First, launch the controller:
python3 -m fastchat.serve.controller
Then, launch the model worker(s):
python3 -m fastchat.serve.multi_model_worker \
--model-path model_math \
--model-names "gpt-3.5-turbo,text-davinci-003" \
--model-path embedding_model_math \
--model-names "text-embedding-ada-002"
Finally, launch the RESTful API server:
python3 -m fastchat.serve.openai_api_server --host 0.0.0.0 --port 6006
You should see terminal output like:
INFO: Started server process [1301]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:6006 (Press CTRL+C to quit)
See more details in https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md
3. Starting the web UI
streamlit run main.py
Then replace the API Base with your api base (in this case is http://0.0.0.0:6006/v1)





