TSP6K
                                
                                
                                
                                    TSP6K copied to clipboard
                            
                            
                            
                        The official PyTorch code for "Traffic Scene Parsing through the TSP6K Dataset".
[CVPR2024] Traffic Scene Parsing through the TSP6K Dataset
The dataset and code in TSP6K dataset. Code is implemented using an open-source semantic segmentation toolbox, MMsegmentation.
Installation
Please follow the installation instructions in mmsegmentation. In our environment, we use the following versions of different packages.
mmsegmentation==0.20.2
mmcv-full=1.4.0
Install the mmseg lib first
git clone https://github.com/PengtaoJiang/TSP6K.git
cd TSP6K/
pip install -v -e .
If you want to evaluate the iIoU score, please install the cityscapesscript lib
cd mmseg/datasets/cityscapesscripts/
python setup.py build install
Dataset Preparation
Download the dataset from this link and put them into /data/TSP6K/.
data
├── TSP6K
│   ├── image
│   ├── label
│   ├── split
You can also download the COCO-style instance bounding box annotations from this link.
Training
Train SegNext with the proposed Detail Refining Decoder using the following command
bash tools/dist_train.sh \
configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
8 --auto-resume  
Evaluation
Results and models
| Method | Backbone | Crop Size | Lr Sche. | val mIoU (ms) | val iIoU (ms) | config | model | 
|---|---|---|---|---|---|---|---|
| SegNext+DRD | MSCAN-B | 1024x1024 | 160000 | 75.8 | 58.4 | config | model | 
| SegNext+DRD | MSCAN-L | 1024x1024 | 160000 | 76.2 | 58.9 | config | model | 
We provide the pre-trained segmentation models above. You can download them and directly evaluate them by
bash tools/dist_test.sh \
    configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
    ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/latest.pth \
    8 --out ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/results.pkl \
    --aug-test --eval mIoU  
Evaluate the segmentation model using the iIoU metric by
bash tools/dist_test.sh \
    configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
    ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/latest.pth \
    8 --out ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/results.pkl \
    --aug-test --eval cityscapes  
Citation
If you find the proposed TSP6K dataset and segmentation network are useful for your research, please cite
@inproceedings{jiang2024traffic,
  title={Traffic Scene Parsing through the TSP6K Dataset},
  author={Jiang, Peng-Tao and Yang, Yuqi and Cao, Yang and Hou, Qibin and Cheng, Ming-Ming and Shen, Chunhua},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2024}
}