OptimizationTestFunctions
OptimizationTestFunctions copied to clipboard
Collection of optimization test functions and some useful methods for working with them
Optimization Test Functions
The package from DPEA. Collection of optimization test functions and some useful methods for working with them
pip install OptimizationTestFunctions
- Optimization Test Functions
- Test function object
- Available test functions
- Sphere
- Ackley
- AckleyTest
- Rosenbrock
- Fletcher
- Griewank
- Penalty2
- Quartic
- Rastrigin
- SchwefelDouble
- SchwefelMax
- SchwefelAbs
- SchwefelSin
- Stairs
- Abs
- Michalewicz
- Scheffer
- Eggholder
- Weierstrass
- Plotting tools
- Structure
- How to use
- Transformation tools
- Structure
- How to use
Test function object
Each test function is the callable object of some class with next fields at least:
bounds-- tuple with structure(xmin, xmax, ymin, ymax). It is recommended borders for 3D plotting and 2D optimization for this functionx_best-- global minimum argument of function inboundsarea as numpy array. If unknown, it'sNonef_best-- function value atx_bestifx_bestexists andNoneotherwise
A lot of function objects need determined dim argument in constructor.
U can call these "functions" like usual functions with structure numpy 1D-array -> float value.
Available test functions
Checklist:
Sphere(dim, degree = 2)Ackley(dim)AckleyTest(dim)Rosenbrock(dim)Fletcher(dim, seed = None)Griewank(dim)Penalty2(dim, a=5, k=100, m=4)Quartic(dim)Rastrigin(dim)SchwefelDouble(dim)SchwefelMax(dim)SchwefelAbs(dim)SchwefelSin(dim)Stairs(dim)Abs(dim)Michalewicz(m = 10)Scheffer(dim)Eggholder(dim)Weierstrass(dim, a = 0.5, b = 3, kmax = 20)
U imports them using code:
from OptimizationTestFunctions import Sphere, Ackley, AckleyTest, Rosenbrock, Fletcher, Griewank, Penalty2, Quartic, Rastrigin, SchwefelDouble, SchwefelMax, SchwefelAbs, SchwefelSin, Stairs, Abs, Michalewicz, Scheffer, Eggholder, Weierstrass
And plot them using code
Sphere

Ackley

AckleyTest

Rosenbrock

Fletcher

Griewank

Penalty2

Quartic

Rastrigin

SchwefelDouble

SchwefelMax

SchwefelAbs

SchwefelSin

Stairs

Abs

Michalewicz

Scheffer

Eggholder

Weierstrass

Plotting tools
Structure
There are plot_3d function for 3D-plotting:
plot_3d(func, points_by_dim = 50, title = '', bounds = None, show_best_if_exists = True, save_as = None, cmap = 'twilight', plot_surface = True, plot_heatmap = True)
with arguments:
func: class callable object; Object which can be called as function.points_by_dim: int, optional; points for each dimension of plotting (50x50, 100x100...). The default is 50.title: str, optional; title of plot with LaTeX notation. The default is ''.bounds: tuple, optional; space bounds with structure(xmin, xmax, ymin, ymax). The default is None.show_best_if_exists: boolean, optional; point best solution by arrow if x_best exists. The default is True.save_as: str/None, optional; file path to save image (None if not needed). The default is None.cmap: str, optional; color map of plot. The default is'twilight'. See another cmaps examples hereplot_surface: boolean, optional; plot 3D surface. The default is True.plot_heatmap: boolean, optional; plot 2D heatmap. The default is True.
How to use
from OptimizationTestFunctions import Fletcher, plot_3d
# dim should be 2 for plotting 3D
dim = 2
# Fletcher is good function depends on random seed!
seed = 1
f1 = Fletcher(dim, seed)
# full available functional of plotting
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}", # LaTeX formula notation
bounds = None,
show_best_if_exists = True,
save_as = "Fletcher1.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)

# disable arrow
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher2.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)

# select another bounds
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = (-2, 6, -8, 10),
show_best_if_exists = False,
save_as = "Fletcher3.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)

# Create another Fletcher function
seed = 33
f2 = Fletcher(dim, seed)
# use another cmap
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher4.png",
cmap = 'inferno',
plot_surface = True,
plot_heatmap = True)

# plot only 3D
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher5.png",
cmap = 'inferno',
plot_surface = True,
plot_heatmap = False)

# plot only heatmap
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = True,
save_as = "Fletcher6.png",
cmap = 'inferno',
plot_surface = False,
plot_heatmap = True)

Transformation tools
Structure
Transformation object is the callable object like "functions" of this package. It performs next useful transformations:
- parallel transfer (shift)
- rotation
- add noises
U can create Transformation object using code:
transform = Transformation(transformed_function, shift_step = None, rotation_matrix = None, noise_generator = None, seed = None)
where:
transformed_function: function or class callable object; transformed function.shift_step: numpy 1D array/None, optional; array of shifts by each dimension orNone. The default isNone.rotation_matrix: 2D-array/int/None, optional; 2D ortogonal rotation matrix or dimension for creating random rotation matrix orNoneif no rotate. The default isNone.noise_generator: function, optional; function gets current value and returns value with some noise. The default isNone.seed: int, optional; random seed for rotation matrix if needed reproduce. The default isNone.
U also can create noises by using Noises static class.
How to use
import numpy as np
from OptimizationTestFunctions import Weierstrass, plot_3d, Transformation, Noises
# dim should be 2 for plotting 3D
dim = 2
# Let's create Weierstrass function
f = Weierstrass(dim, a = 0.5, b = 5, kmax = 20)
# show it
plot_3d(f,
points_by_dim = 70,
title = f"{type(f).__name__}",
bounds = None,
show_best_if_exists = True,
save_as = "Trans1.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)

# transformation with shift
shifted_func = Transformation(f, shift_step=np.array([3, 4]))
# show it
plot_3d(shifted_func,
points_by_dim = 70,
title = "shifted",
bounds = None,
show_best_if_exists = True,
save_as = "Trans2.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)

# transformation with rotation
rotated_func = Transformation(f, rotation_matrix = dim, seed = 2) # random rotation matrix with dim 2
# show it
plot_3d(rotated_func,
points_by_dim = 70,
title = "rotated",
bounds = None,
show_best_if_exists = True,
save_as = "Trans3.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)

# transformation with noise
noised_func = Transformation(f, noise_generator = Noises.normal(center = 0, sd = 0.5))
# show it
plot_3d(noised_func,
points_by_dim = 70,
title = "noised",
bounds = None,
show_best_if_exists = True,
save_as = "Trans4.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)

# U can specify your noise behavior
def add_noise(current_val):
if current_val > 5:
return 0
return current_val + np.random.random()/10
noised_func = Transformation(f, noise_generator = add_noise)
plot_3d(noised_func,
points_by_dim = 70,
title = "noised",
bounds = None,
show_best_if_exists = True,
save_as = "Trans5.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)

# Also u can combine all these transformations
new_func = Transformation(f,
shift_step= np.array([10, -10]),
rotation_matrix = 2, seed = 3,
noise_generator = Noises.uniform(-0.1, 0.5)
)
plot_3d(new_func,
points_by_dim = 70,
title = "mixed",
bounds = None,
show_best_if_exists = True,
save_as = "Trans6.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
