Paddle2ONNX icon indicating copy to clipboard operation
Paddle2ONNX copied to clipboard

量化的飞桨模型部署正常,但是转化为onnx模型出现问题(非量化的模型转为onnx可以正常部署)

Open stringency opened this issue 1 year ago • 4 comments

请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem

  • 系统环境/System Environment:python3.10.4
  • 版本号/Version:Paddle: PaddleOCR: 问题相关组件/Related components: paddle2onnx 1.0.6 paddlepaddle 2.5.2 paddleslim 2.6.0
  • 运行指令/Command Code:
  • 微调量化onnx部署

python tools/infer/predict_system.py --use_onnx=True --use_gpu=False --det_model_dir=output/CCPD/det_quant/onnx/model.onnx --rec_model_dir=output/CCPD/rec_quant/onnx/model.onnx --image_dir="F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" --rec_image_shape=3,48,320

  • 完整报错/Complete Error Message: [2024/05/18 02:21:46] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320 [2024/05/18 02:21:46] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.13833069801330566 [2024/05/18 02:21:46] ppocr DEBUG: rec_res num : 0, elapsed : 0.0 [2024/05/18 02:21:46] ppocr DEBUG: 0 Predict time of F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg: 0.141s [2024/05/18 02:21:46] ppocr DEBUG: The visualized image saved in ./inference_results\04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg [2024/05/18 02:21:46] ppocr INFO: The predict total time is 0.1968538761138916

stringency avatar May 19 '24 04:05 stringency

为了对比我提供飞桨模型的运行结果

飞桨模型非onnx模型的微调量化部署

python tools/infer/predict_system.py --det_model_dir=output/CCPD/det_quant/infer/ --rec_model_dir=output/CCPD/rec_quant/infer/ --image_dir="F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" --rec_image_shape=3,48,320

运行结果

[2024/05/18 02:34:52] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320 [2024/05/18 02:34:52] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.12008166313171387 [2024/05/18 02:34:52] ppocr DEBUG: rec_res num : 1, elapsed : 0.008484840393066406 [2024/05/18 02:34:52] ppocr DEBUG: 0 Predict time of F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg: 0.133s rec_image_shape=3,48,320 E0518 02:37:38.138892 5744 analysis_config.cc:121] Please use PaddlePaddle with GPU version. E0518 02:37:38.592444 5744 analysis_config.cc:121] Please use PaddlePaddle with GPU version. [2024/05/18 02:37:38] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320 [2024/05/18 02:37:39] ppocr DEBUG: dt_boxes num : 1, elapsed : 1.078622579574585 [2024/05/18 02:37:40] ppocr DEBUG: rec_res num : 1, elapsed : 0.1730790138244629 [2024/05/18 02:37:40] ppocr DEBUG: 0 Predict time of F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg: 1.254s [2024/05/18 02:37:40] ppocr DEBUG: 皖AD867660, 0.873 [2024/05/18 02:37:40] ppocr DEBUG: The visualized image saved in ./inference_results\04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg [2024/05/18 02:37:40] ppocr INFO: The predict total time is 1.304152488708496

stringency avatar May 19 '24 04:05 stringency

幸苦提供一下量化以后的PaddleOCR模型,我这边测试一下

Zheng-Bicheng avatar May 28 '24 01:05 Zheng-Bicheng

幸苦提供一下量化以后的PaddleOCR模型,我这边测试一下

output/CCPD/det_quant/onnx/model.onnx: det_quant_model.zip

output/CCPD/rec_quant/onnx/model.onnx: rec_quant_model.zip

stringency avatar May 28 '24 01:05 stringency

你好,请问你在将检测模型进行量化训练时,训练速度如何呢?为什么我这边正常训练模型速度很快,但是转为量化训练就会慢很多。

Homura852 avatar Aug 26 '24 03:08 Homura852

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Dec 11 '24 02:12 github-actions[bot]

您好,您发的邮件已经收到,谢谢!

stringency avatar Dec 11 '24 02:12 stringency

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Jan 12 '25 02:01 github-actions[bot]

您好,您发的邮件已经收到,谢谢!

stringency avatar Jan 12 '25 02:01 stringency

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Feb 13 '25 02:02 github-actions[bot]

您好,您发的邮件已经收到,谢谢!

stringency avatar Feb 13 '25 02:02 stringency

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Mar 16 '25 02:03 github-actions[bot]

您好,您发的邮件已经收到,谢谢!

stringency avatar Mar 16 '25 02:03 stringency

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Apr 16 '25 02:04 github-actions[bot]

您好,您发的邮件已经收到,谢谢!

stringency avatar Apr 16 '25 02:04 stringency