PyTorch_image_classifier icon indicating copy to clipboard operation
PyTorch_image_classifier copied to clipboard

Image classification: efficientnet/resnest/seresnext/.....

Results 11 PyTorch_image_classifier issues
Sort by recently updated
recently updated
newest added

Bumps [numpy](https://github.com/numpy/numpy) from 1.18.1 to 1.22.0. Release notes Sourced from numpy's releases. v1.22.0 NumPy 1.22.0 Release Notes NumPy 1.22.0 is a big release featuring the work of 153 contributors spread...

dependencies

Bumps [pillow](https://github.com/python-pillow/Pillow) from 7.2.0 to 9.0.1. Release notes Sourced from pillow's releases. 9.0.1 https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html Changes In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk] Restrict builtins within...

dependencies

> Hello, I now want to use resnest to train my own image data set. What I do is image classification, but how to convert my image file into data.csv, because the data processing in the README is a bit unclear, I hope to get Thank you for your reply!

[{"_id":"63564f47d297b62132325ab1","body":"what the fold mean?","issue_id":1660739901104,"origin_id":736554887,"user_origin_id":46672085,"create_time":1606829712,"update_time":1606829712,"id":1666600775379,"updated_at":"2022-10-24T08:39:35.379000Z","created_at":"2022-10-24T08:39:35.379000Z"},{"_id":"63564f47d297b62132325ab2","body":"> what the fold mean?\r\n\r\nhttps:\/\/github.com\/MachineLP\/PyTorch_image_classifier\/blob\/master\/tools\/data_preprocess.py","issue_id":1660739901104,"origin_id":737718910,"user_origin_id":22276534,"create_time":1606980252,"update_time":1606980252,"id":1666600775383,"updated_at":"2022-10-24T08:39:35.383000Z","created_at":"2022-10-24T08:39:35.383000Z"},{"_id":"63564f47d297b62132325ab3","body":"> > Hello, I now want to use resnest to train my own image data set. What I do is image classification, but how to convert my image file into data.csv, because the data processing in the README is a bit unclear, I hope to get Thank you for your reply!\r\n> \r\n> Just convert your data to this format\uff1ahttps:\/\/github.com\/MachineLP\/PyTorch_image_classifier\/blob\/master\/data\/data.csv. \"filepath\": The path of the image. \"target\": The label of the image. \"fold\": Not needed.\r\n> \r\n> _Originally posted by @MachineLP in [#5 (comment)](https:\/\/github.com\/MachineLP\/PyTorch_image_classifier\/issues\/5#issuecomment-725309449)_\r\n\r\n\u54e5\u4eec\u4f60\u73b0\u5728\u89e3\u51b3\u4e86\u4e48\uff1f\u6211\u8fd8\u662f\u6709\u70b9\u8ff7\u832b\uff0c\u4e3a\u4ec0\u4e48\u8981\u4f7f\u7528\u4ea4\u53c9\u9a8c\u8bc1\u7684\u65b9\u5f0f\u5904\u7406\u6570\u636e\u96c6\uff0c\u800c\u4e14\u4ed6\u90a3\u4e2a\u5904\u7406\u6570\u636e\u96c6\u7684\u4ee3\u7801\u4e3a\u5565\u53ea\u5199\u4e86val_index,train_index\u6ca1\u4e86\uff1f\r\n","issue_id":1660739901104,"origin_id":1022786028,"user_origin_id":77648679,"create_time":1643250448,"update_time":1643250448,"id":1666600775387,"updated_at":"2022-10-24T08:39:35.386000Z","created_at":"2022-10-24T08:39:35.386000Z"}] comment

> Hello, I now want to use resnest to train my own image data set. What I do is image classification, but how to convert my image file into data.csv,...

Hi! Great work done here! I‘m wondering how the model name combined, such as , what 'ns' in 'tf_efficientnet_b4_ns' means? other like... 'es' in 'tf_efficientnet_es', 'ap' in ‘tf_efficientnet_b6_ap’, etc. Really...

train default dataset, acc unchange.

[{"_id":"635650b5ea01ec786e79511d","body":"> Fri Dec 11 22:08:15 2020 Fold 2, Epoch 11, lr: 0.0000849, train loss: 0.03911, valid loss: 0.00720, acc: 47.3684, auc: 0.500000.\r\n> Fri Dec 11 22:08:15 2020 Fold 2, Epoch 12\r\n> loss: 0.03136, smth: 0.02190: 100%|\r\n> 100%|\r\n> Fri Dec 11 22:08:20 2020 Fold 2, Epoch 12, lr: 0.0000565, train loss: 0.02190, valid loss: 0.00529, acc: 47.3684, auc: 0.500000.\r\n> Fri Dec 11 22:08:20 2020 Fold 2, Epoch 13\r\n> loss: 0.00997, smth: 0.02012: 100%|\r\n> 100%|\r\n> Fri Dec 11 22:08:24 2020 Fold 2, Epoch 13, lr: 0.0000327, train loss: 0.02012, valid loss: 0.00648, acc: 47.3684, auc: 0.500000.\r\n> Fri Dec 11 22:08:24 2020 Fold 2, Epoch 14\r\n> loss: 0.06338, smth: 0.05295: 100%|\r\n> \r\n> Fri Dec 11 22:08:29 2020 Fold 2, Epoch 14, lr: 0.0000149, train loss: 0.05295, valid loss: 0.00702, acc: 47.3684, auc: 0.500000.\r\n> Fri Dec 11 22:08:29 2020 Fold 2, Epoch 15\r\n> loss: 0.00576, smth: 0.01205: 100%|\r\n> Fri Dec 11 22:08:35 2020 Fold 2, Epoch 15, lr: 0.0000038, train loss: 0.01205, valid loss: 0.00804, acc: 47.3684, auc: 0.500000.\r\n> 77 19\r\n> Fri Dec 11 22:08:35 2020 Fold 3, Epoch 1\r\n> loss: 0.65180, smth: 0.65786: 100%|\r\n> Fri Dec 11 22:08:40 2020 Fold 3, Epoch 1, lr: 0.0000300, train loss: 0.65786, valid loss: 0.64426, acc: 47.3684, auc: 0.500000.\r\n\r\nBecause there is too little data, this is normal.","issue_id":1660739901115,"origin_id":745010035,"user_origin_id":22276534,"create_time":1607999137,"update_time":1607999137,"id":1666601141185,"updated_at":"2022-10-24T08:45:41.185000Z","created_at":"2022-10-24T08:45:41.185000Z"},{"_id":"635650b5ea01ec786e79511e","body":" @MachineLP \u60a8\u597d\uff01\u6709\u4e9b\u95ee\u9898\u60f3\u8bf7\u6559\u4e0b\u60a8\u3002\r\n \r\n\r\n- \u6211\u4f7f\u7528\u4e86\u81ea\u5df1\u7684\u6570\u636e\u96c6~3k\u5f20\u56fe\u7247\uff0c\u4f46\u662facc\u548cauc\u4f9d\u7136\u59cb\u7ec8\u6ca1\u6709\u53d8\u5316\uff1f\u8bf7\u95ee\u662f\u600e\u4e48\u56de\u4e8b\u5462\uff1f\r\n![image](https:\/\/user-images.githubusercontent.com\/23701880\/107133700-f3cdf680-6925-11eb-96ee-3c1f1df3d274.png)\r\n- \u4e3a\u4ec0\u4e48\u5728\u60a8\u7684\u6570\u636e\u96c6\u4e2d\uff0c\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u6211\u5927\u6982\u770b\u4e86\u60a8\u7684\u4ee3\u7801\uff0c\u662f\u5426\u903b\u8f91\u662f\u8fd9\u6837\uff08\u5047\u5b9a\u5f53\u524d\u5faa\u73affold==0\uff09\uff1a\u6b64\u65f6fold!=0\u7684\u56fe\u7247\u4f1a\u88ab\u5f53\u505a\u8bad\u7ec3\u96c6\uff0c\u5176\u4f59\u7684fold==0\u7684\u88ab\u5f53\u505a\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\uff1f\u4f46\u662f\u8fd9\u6837\u4e5f\u4f7f\u5f97\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u662f\u5426\u4e0d\u592a\u597d\uff0c\u6309\u71676:2:2\u5212\u5206\u4f1a\u66f4\u597d\u4e9b\uff1f","issue_id":1660739901115,"origin_id":774572341,"user_origin_id":23701880,"create_time":1612661128,"update_time":1612661145,"id":1666601141190,"updated_at":"2022-10-24T08:45:41.189000Z","created_at":"2022-10-24T08:45:41.189000Z"},{"_id":"635650b5ea01ec786e79511f","body":"> @MachineLP \u60a8\u597d\uff01\u6709\u4e9b\u95ee\u9898\u60f3\u8bf7\u6559\u4e0b\u60a8\u3002\r\n> \r\n> * \u6211\u4f7f\u7528\u4e86\u81ea\u5df1\u7684\u6570\u636e\u96c6~3k\u5f20\u56fe\u7247\uff0c\u4f46\u662facc\u548cauc\u4f9d\u7136\u59cb\u7ec8\u6ca1\u6709\u53d8\u5316\uff1f\u8bf7\u95ee\u662f\u600e\u4e48\u56de\u4e8b\u5462\uff1f\r\n> ![image](https:\/\/user-images.githubusercontent.com\/23701880\/107133700-f3cdf680-6925-11eb-96ee-3c1f1df3d274.png)\r\n> * \u4e3a\u4ec0\u4e48\u5728\u60a8\u7684\u6570\u636e\u96c6\u4e2d\uff0c\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u6211\u5927\u6982\u770b\u4e86\u60a8\u7684\u4ee3\u7801\uff0c\u662f\u5426\u903b\u8f91\u662f\u8fd9\u6837\uff08\u5047\u5b9a\u5f53\u524d\u5faa\u73affold==0\uff09\uff1a\u6b64\u65f6fold!=0\u7684\u56fe\u7247\u4f1a\u88ab\u5f53\u505a\u8bad\u7ec3\u96c6\uff0c\u5176\u4f59\u7684fold==0\u7684\u88ab\u5f53\u505a\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\uff1f\u4f46\u662f\u8fd9\u6837\u4e5f\u4f7f\u5f97\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u662f\u5426\u4e0d\u592a\u597d\uff0c\u6309\u71676:2:2\u5212\u5206\u4f1a\u66f4\u597d\u4e9b\uff1f\r\n\r\n\u8fd9\u4e2a\u6bd4\u4f8b\u53ef\u4ee5\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u6539\u4e00\u4e0b\u3002","issue_id":1660739901115,"origin_id":774576884,"user_origin_id":22276534,"create_time":1612663784,"update_time":1612663784,"id":1666601141193,"updated_at":"2022-10-24T08:45:41.193000Z","created_at":"2022-10-24T08:45:41.193000Z"},{"_id":"635650b5ea01ec786e795120","body":"> > @MachineLP \u60a8\u597d\uff01\u6709\u4e9b\u95ee\u9898\u60f3\u8bf7\u6559\u4e0b\u60a8\u3002\r\n> > \r\n> > * \u6211\u4f7f\u7528\u4e86\u81ea\u5df1\u7684\u6570\u636e\u96c6~3k\u5f20\u56fe\u7247\uff0c\u4f46\u662facc\u548cauc\u4f9d\u7136\u59cb\u7ec8\u6ca1\u6709\u53d8\u5316\uff1f\u8bf7\u95ee\u662f\u600e\u4e48\u56de\u4e8b\u5462\uff1f\r\n> > ![image](https:\/\/user-images.githubusercontent.com\/23701880\/107133700-f3cdf680-6925-11eb-96ee-3c1f1df3d274.png)\r\n> > * \u4e3a\u4ec0\u4e48\u5728\u60a8\u7684\u6570\u636e\u96c6\u4e2d\uff0c\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u6211\u5927\u6982\u770b\u4e86\u60a8\u7684\u4ee3\u7801\uff0c\u662f\u5426\u903b\u8f91\u662f\u8fd9\u6837\uff08\u5047\u5b9a\u5f53\u524d\u5faa\u73affold==0\uff09\uff1a\u6b64\u65f6fold!=0\u7684\u56fe\u7247\u4f1a\u88ab\u5f53\u505a\u8bad\u7ec3\u96c6\uff0c\u5176\u4f59\u7684fold==0\u7684\u88ab\u5f53\u505a\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\uff1f\u4f46\u662f\u8fd9\u6837\u4e5f\u4f7f\u5f97\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u662f\u5426\u4e0d\u592a\u597d\uff0c\u6309\u71676:2:2\u5212\u5206\u4f1a\u66f4\u597d\u4e9b\uff1f\r\n> \r\n> \u8fd9\u4e2a\u6bd4\u4f8b\u53ef\u4ee5\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u6539\u4e00\u4e0b\u3002\r\n\r\n\u611f\u8c22\u60a8\u7684\u56de\u590d\uff0c\u5173\u4e8eacc\u548cauc\u6ca1\u6709\u6539\u53d8\uff0c\u60a8\u5927\u6982\u77e5\u9053\u662f\u54ea\u91cc\u6709\u95ee\u9898\u5417\uff1f\u56e0\u4e3a\u6709\u4e9b\u4ee3\u7801\u7ec6\u8282\u6ca1\u770b\u592a\u660e\u767d\uff0c\u6240\u4ee5\u4e00\u4e0b\u4e0d\u77e5\u9053\u600e\u4e48\u6539\u8fd9\u91cc\uff0c\u8bf7\u6559\u60a8\u6709\u5927\u6982\u7684\u601d\u8def\u5173\u4e8e\u8fd9\u91cc\u51fa\u95ee\u9898\u4e86\u5417\uff1f","issue_id":1660739901115,"origin_id":774578606,"user_origin_id":23701880,"create_time":1612664905,"update_time":1612664905,"id":1666601141198,"updated_at":"2022-10-24T08:45:41.198000Z","created_at":"2022-10-24T08:45:41.198000Z"},{"_id":"635650b5ea01ec786e795121","body":"> > > @MachineLP \u60a8\u597d\uff01\u6709\u4e9b\u95ee\u9898\u60f3\u8bf7\u6559\u4e0b\u60a8\u3002\r\n> > > \r\n> > > * \u6211\u4f7f\u7528\u4e86\u81ea\u5df1\u7684\u6570\u636e\u96c6~3k\u5f20\u56fe\u7247\uff0c\u4f46\u662facc\u548cauc\u4f9d\u7136\u59cb\u7ec8\u6ca1\u6709\u53d8\u5316\uff1f\u8bf7\u95ee\u662f\u600e\u4e48\u56de\u4e8b\u5462\uff1f\r\n> > > ![image](https:\/\/user-images.githubusercontent.com\/23701880\/107133700-f3cdf680-6925-11eb-96ee-3c1f1df3d274.png)\r\n> > > * \u4e3a\u4ec0\u4e48\u5728\u60a8\u7684\u6570\u636e\u96c6\u4e2d\uff0c\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u6211\u5927\u6982\u770b\u4e86\u60a8\u7684\u4ee3\u7801\uff0c\u662f\u5426\u903b\u8f91\u662f\u8fd9\u6837\uff08\u5047\u5b9a\u5f53\u524d\u5faa\u73affold==0\uff09\uff1a\u6b64\u65f6fold!=0\u7684\u56fe\u7247\u4f1a\u88ab\u5f53\u505a\u8bad\u7ec3\u96c6\uff0c\u5176\u4f59\u7684fold==0\u7684\u88ab\u5f53\u505a\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\uff1f\u4f46\u662f\u8fd9\u6837\u4e5f\u4f7f\u5f97\u9a8c\u8bc1\u96c6\u548c\u6d4b\u8bd5\u96c6\u662f\u4e00\u81f4\u7684\uff1f\u662f\u5426\u4e0d\u592a\u597d\uff0c\u6309\u71676:2:2\u5212\u5206\u4f1a\u66f4\u597d\u4e9b\uff1f\r\n> > \r\n> > \r\n> > \u8fd9\u4e2a\u6bd4\u4f8b\u53ef\u4ee5\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u6539\u4e00\u4e0b\u3002\r\n> \r\n> \u611f\u8c22\u60a8\u7684\u56de\u590d\uff0c\u5173\u4e8eacc\u548cauc\u6ca1\u6709\u6539\u53d8\uff0c\u60a8\u5927\u6982\u77e5\u9053\u662f\u54ea\u91cc\u6709\u95ee\u9898\u5417\uff1f\u56e0\u4e3a\u6709\u4e9b\u4ee3\u7801\u7ec6\u8282\u6ca1\u770b\u592a\u660e\u767d\uff0c\u6240\u4ee5\u4e00\u4e0b\u4e0d\u77e5\u9053\u600e\u4e48\u6539\u8fd9\u91cc\uff0c\u8bf7\u6559\u60a8\u6709\u5927\u6982\u7684\u601d\u8def\u5173\u4e8e\u8fd9\u91cc\u51fa\u95ee\u9898\u4e86\u5417\uff1f\r\n\r\n\u4e0a\u4f20\u7684\u6570\u636e\u96c6 \u592a\u5c0f\u4e86\uff0c\u4ec5\u4f9b\u6d4b\u8bd5\u6d41\u7a0b\uff0c \u6362\u6210\u81ea\u5df1\u6570\u636e\u96c6\u3002","issue_id":1660739901115,"origin_id":774578890,"user_origin_id":22276534,"create_time":1612665108,"update_time":1612665108,"id":1666601141200,"updated_at":"2022-10-24T08:45:41.200000Z","created_at":"2022-10-24T08:45:41.200000Z"}] comment

Fri Dec 11 22:08:15 2020 Fold 2, Epoch 11, lr: 0.0000849, train loss: 0.03911, valid loss: 0.00720, acc: 47.3684, auc: 0.500000. Fri Dec 11 22:08:15 2020 Fold 2, Epoch 12...

模型使用AUC作为评价指标,只能用于二分类吗?

[{"_id":"6356545e8041c95dfb139279","body":"\u4e0d\u662f\u7684\uff0c \u662f\u4e3a\u4e86\u770b\u67d0\u4e2a\u7c7b\u522b\u4e0b\u7684AUC\u3002","issue_id":1660739901118,"origin_id":759336795,"user_origin_id":22276534,"create_time":1610531602,"update_time":1610531602,"id":1666602078953,"updated_at":"2022-10-24T09:01:18.952000Z","created_at":"2022-10-24T09:01:18.952000Z"}] comment

I don’t know what to do with my own image data set, I hope to get your reply, thank you

[{"_id":"635658adea01ec786e795762","body":"> Hello, I now want to use resnest to train my own image data set. What I do is image classification, but how to convert my image file into data.csv, because the data processing in the README is a bit unclear, I hope to get Thank you for your reply!\r\n\r\nJust convert your data to this format\uff1ahttps:\/\/github.com\/MachineLP\/PyTorch_image_classifier\/blob\/master\/data\/data.csv.\r\n\"filepath\": The path of the image.\r\n\"target\": The label of the image.\r\n\"fold\": Not needed.","issue_id":1660739901121,"origin_id":725309449,"user_origin_id":22276534,"create_time":1605086686,"update_time":1605086990,"id":1666603181393,"updated_at":"2022-10-24T09:19:41.393000Z","created_at":"2022-10-24T09:19:41.393000Z"}] comment

Hello, I now want to use resnest to train my own image data set. What I do is image classification, but how to convert my image file into data.csv, because...

Bumps [pillow](https://github.com/python-pillow/Pillow) from 7.2.0 to 10.0.1. Release notes Sourced from pillow's releases. 10.0.1 https://pillow.readthedocs.io/en/stable/releasenotes/10.0.1.html Changes Updated libwebp to 1.3.2 #7395 [@​radarhere] Updated zlib to 1.3 #7344 [@​radarhere] 10.0.0 https://pillow.readthedocs.io/en/stable/releasenotes/10.0.0.html Changes...

dependencies