LLaVA-NeXT
LLaVA-NeXT copied to clipboard
Can the inference code of LLAVA-OV be modified to support batch inference? Single-instance inference is a bit slow.
from operator import attrgetter
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
import torch
import cv2
import numpy as np
from PIL import Image
import requests
import copy
import warnings
from decord import VideoReader, cpu
warnings.filterwarnings("ignore")
# Load the OneVision model
pretrained = "lmms-lab/llava-onevision-qwen2-7b-ov"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
llava_model_args = {
"multimodal": True,
}
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa", **llava_model_args)
model.eval()
# Function to extract frames from video
def load_video(video_path, max_frames_num):
if type(video_path) == str:
vr = VideoReader(video_path, ctx=cpu(0))
else:
vr = VideoReader(video_path[0], ctx=cpu(0))
total_frame_num = len(vr)
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames # (frames, height, width, channels)
# Load and process video
video_path = "jobs.mp4"
video_frames = load_video(video_path, 16)
print(video_frames.shape) # (16, 1024, 576, 3)
image_tensors = []
frames = image_processor.preprocess(video_frames, return_tensors="pt")["pixel_values"].half().cuda()
image_tensors.append(frames)
# Prepare conversation input
conv_template = "qwen_1_5"
question = f"{DEFAULT_IMAGE_TOKEN}\nDescribe what's happening in this video."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [frame.size for frame in video_frames]
# Generate response
cont = model.generate(
input_ids,
images=image_tensors,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
modalities=["video"],
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs[0])
Perhaps this link can assist you, as it implements batch inference for images: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/169#issuecomment-2717080845