MOT-DeepSort-CS
MOT-DeepSort-CS copied to clipboard
Multiple object tracking
This is the C# implementation of SoRT and DeepSoRT trackers using YOLO network as person predictor and OSNet as appearance extractor in the frame.
Examples
SoRT example
DeepSoRT example
Console app usage (windows)
Command line options
-s, --source Required. Source video file path.
-t, --target Required. Target video file path.
-d, --detector Required. Detector net file path.
-m, --matcher Required. Matcher type:
0 for DeepSort
1 for Sort
2 for Deep
-y, --yver Required. Yolo model:
0 for 1280 resolution
1 for 640 resolution
-v, --aver Appearance model:
0 for OSNet
1 Fast-Reid
-a, --appearance Appearance extractor net file path.
--fps Target video fps.
--threshold Defines treshold for matcher.
--aweight Defines appearance weight for deepsort matcher.
--asmooth Defines appearance smooth weight for deepsort matcher.
--streak Defines min streak to reidentify person.
--misses Defines max misses to lose indentification.
--fsmooth Defines passed frames for smooth weight to be applied.
--acount Defines appearance extractors in memory count.
-c, --conf Defines target people detection confidence([0-1]).
--help Display this help screen.
--version Display version information.
Example of using
mot_x64 -s source.mp4 -t target.mp4 -d yolo640v5.onnx -y 1 -m 0 -a osnet.onnx -v 0 -c .4
MOT.CORE usage
Used file hierarchy:
.
└ Assets
├ Input
│ └ test.mp4
├ Output
└ Models
├ Yolo
│ └ yolo640v5.onnx
└ Reid
└ osnet_x1_0_msmt17.onnx
Some .onnx models are in src/MOT/ directory.
Initializing predictor and extractor
string yoloPath = "../../../Assets/Models/Yolo/yolo640v5.onnx";
var predictor = new YoloScorer<Yolo640v5>(File.ReadAllBytes(yoloPath));
string osnetPath = "../../../Assets/Models/Reid/osnet_x1_0_msmt17.onnx";
int extractorsInMemoryCount = 3;
var appearanceExtractor = new ReidScorer<OSNet_x1_0>(File.ReadAllBytes(osnetPath),
extractorsInMemoryCount);
Initializing SoRT matcher
var matcher = new SortMatcher(predictor);
Initializing DeepSoRT matcher
var matcher = new DeepSortMatcher(predictor, appearanceExtractor);
Drawing people bounding boxed in the frame.
private static void DrawTracks(Bitmap frame, IReadOnlyList<ITrack> tracks)
{
Graphics graphics = Graphics.FromImage(frame);
foreach (ITrack track in tracks)
{
const int penSize = 4;
const float yBoundingBoxIntent = 45f;
const float xNumberIntent = 4f;
const int fontSize = 44;
graphics.DrawRectangles(new Pen(track.Color, penSize),
new[] { track.CurrentBoundingBox });
graphics.FillRectangle(new SolidBrush(track.Color),
new RectangleF(track.CurrentBoundingBox.X - (penSize / 2),
track.CurrentBoundingBox.Y - yBoundingBoxIntent,
track.CurrentBoundingBox.Width + penSize,
yBoundingBoxIntent - (penSize / 2)));
(float x, float y) = (track.CurrentBoundingBox.X - xNumberIntent,
track.CurrentBoundingBox.Y - yBoundingBoxIntent);
graphics.DrawString($"{track.Id}",
new Font("Consolas", fontSize, GraphicsUnit.Pixel),
new SolidBrush(Color.FromArgb((0xFF << 24) | 0xDDDDDD)),
new PointF(x, y));
}
graphics.Dispose();
}
Getting video frame using Emgu.CV, handling frame and drawing bounding boxes
VideoCapture videoCapture = new VideoCapture("../../../Assets/Input/test.mp4");
double targetFps = videoCapture.Get(Emgu.CV.CvEnum.CapProp.Fps);
int width = videoCapture.Width;
int height = videoCapture.Height;
VideoWriter videoWriter = new VideoWriter("../../../Assets/Output/test.mp4", -1,
targetFps, new Size(width, height), true);
string yoloPath = "../../../Assets/Models/Yolo/yolo640v5.onnx";
var predictor = new YoloScorer<Yolo640v5>(File.ReadAllBytes(yoloPath));
string osnetPath = "../../../Assets/Models/Reid/osnet_x1_0_msmt17.onnx";
int extractorsInMemoryCount = 3;
var appearanceExtractor = new ReidScorer<OSNet_x1_0>(File.ReadAllBytes(osnetPath),
extractorsInMemoryCount);
var matcher = new DeepSortMatcher(predictor, appearanceExtractor);
float targetConfidence = 0.4f;
Mat readBuffer = new Mat();
videoCapture.Read(readBuffer);
while (readBuffer.IsEmpty == false)
{
Bitmap frame = readBuffer.ToBitmap();
IReadOnlyList<ITrack> tracks = matcher.Run(frame, targetConfidence, DetectionObjectType.Person);
DrawTracks(frame, tracks);
videoWriter.Write(frame.ToImage<Emgu.CV.Structure.Bgr, byte>());
videoCapture.Read(readBuffer);
}
matcher.Dispose();
videoWriter.Dispose();