FFTW.jl icon indicating copy to clipboard operation
FFTW.jl copied to clipboard

Allocations when multi-threading

Open Lightup1 opened this issue 3 years ago • 5 comments
trafficstars

When activate multithreading by FFTW.set_num_threads(), it become slower and allocate more. The provider here is the default "fftw". But when using "mkl", it just use multithreading automatically depending on the problem size and allocation is 0. Here are some benchmarks

data1=rand(ComplexF64,2^12)
p1=plan_fft!(data1)
julia> p1=plan_fft!(data1)
FFTW in-place forward plan for 4096-element array of ComplexF64
(dft-ct-dit/32
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dft-directbuf/130-128-x32 "n1fv_128_avx2"))

julia> @benchmark $p1*$data1
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (min … max):  21.800 μs … 68.700 μs  ┊ GC (min … max): 0.00% … 0.00%
 Time  (median):     23.100 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   23.189 μs ±  1.335 μs  ┊ GC (mean ± σ):  0.00% ± 0.00%

         ▁  ▁█
  ▂▂▂▄▄▅▅█▆███▆▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▂ ▃
  21.8 μs         Histogram: frequency by time        29.3 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.

julia> FFTW.set_num_threads(6)

julia> p1=plan_fft!(data1)
FFTW in-place forward plan for 4096-element array of ComplexF64
(dft-thr-ct-dit-x6/32
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dftw-direct-32/8 "t3fv_32_avx2_128")
  (dft-directbuf/130-128-x32 "n1fv_128_avx2"))

julia> @benchmark $p1*$data1
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (min … max):  23.900 μs … 300.000 μs  ┊ GC (min … max): 0.00% … 0.00%
 Time  (median):     48.000 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   50.904 μs ±  12.291 μs  ┊ GC (mean ± σ):  0.00% ± 0.00%

                  ▁▁▂▄▆█▆▄▂ ▁ ▂▁▁
  ▂▁▂▂▂▂▂▂▂▃▃▃▃▅▇▇███████████████▇▆▅▅▅▅▅▅▅▄▄▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂ ▄
  23.9 μs         Histogram: frequency by time         83.5 μs <

 Memory estimate: 4.41 KiB, allocs estimate: 53.

And

julia> versioninfo()
Julia Version 1.7.2
Commit bf53498635 (2022-02-06 15:21 UTC)
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: AMD Ryzen 5 2600X Six-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-12.0.1 (ORCJIT, znver1)
Environment:
  JULIA_NUM_THREADS = 6
  JULIA_PKG_SERVER = https://mirrors.tuna.tsinghua.edu.cn/julia
  JULIA_EDITOR = code

Lightup1 avatar May 15 '22 04:05 Lightup1

  1. The allocation comes from julia's threading system. (FFTW backend use Julia's threading system, while MKL not.)
  2. IIRC, for single 1d-inplace fft, FFTW's doc has said multi-threading might not help.

N5N3 avatar May 18 '22 04:05 N5N3

Thanks for the information. Is there a way to change the threading system (not the provider) to let it allocation free?

Lightup1 avatar May 21 '22 12:05 Lightup1

Julia has https://github.com/JuliaSIMD/Polyester.jl, which should be able to replace https://github.com/JuliaMath/FFTW.jl/blob/17bc81a0fcf9875d777ea4bee2fca70fc23c8a0c/src/providers.jl#L56-L60 with

 function spawnloop(f::Ptr{Cvoid}, fdata::Ptr{Cvoid}, elsize::Csize_t, num::Cint, callback_data::Ptr{Cvoid})
    @batch per=core for i = 0:num-1
        ccall(f, Ptr{Cvoid}, (Ptr{Cvoid},), fdata + elsize*i) 
    end
 end

(I didn't test it, so don't except this to work!!!!!)

But I'm affraid this won't help the performance. FFT it self is much more heavy than the allocation.

N5N3 avatar May 21 '22 12:05 N5N3

Thank you very much! I'll test it later.

Lightup1 avatar May 21 '22 12:05 Lightup1

I can confirm this issue, I haven't noticed it in the past.

julia> using FFTW, BenchmarkTools

julia> x = randn((1024, 1024));

julia> FFTW.set_num_threads(8)

julia> @btime ifft($x);
  7.646 ms (17810 allocations: 33.20 MiB)

julia> FFTW.set_num_threads(4)

julia> @btime ifft($x);
  6.362 ms (115 allocations: 32.01 MiB)

julia> FFTW.set_num_threads(6)

julia> @btime ifft($x);
  10.943 ms (38485 allocations: 34.27 MiB)

roflmaostc avatar Jun 14 '22 12:06 roflmaostc