ITensors.jl
ITensors.jl copied to clipboard
[WIP][BlockSparseArrays] `map!` with mismatched blocking
This is work in progress for defining map! for BlockSparseArrays with mismatched blocking.
This is functionality that is required to perform block fusion, as a follow-up to #1326.
So far, it performs some unnecessary copying, and also only works with one input array, which both should be relatively easy fixes.
- [ ] Add tests.
- [ ] For out-of-place expressions like
a + b, currently it outputs a block sparse array withaxes(a). If the axes/blocking ofaandbare different, it should combine the axes (i.e. output a block sparse array with a finer blocking structure compatible with the blocking ofaandb). - [ ]
map(+, a, b)outputs a dense block array, not a block sparse array. - [ ] Fix issues with using
GradedAxesas axes of block sparse arrays and performing mapping/broadcasting operations. There are some lingering bugs with that, and we need to make sure we preserve the sectors of the graded axes properly. - [x] Generalize new
map!functionality to arbitrary number of input arrays. - [x] Avoid extraneous copying of source blocks (requires fixing a bug when using views of a
BlockSparseArray). - [x] Investigate some other slicing errors I came across during this PR, either fix or add broken tests.
A demonstration of new functionality:
using BlockArrays: Block, blockedrange, blocksize
using NDTensors.BlockSparseArrays: BlockSparseArray
using Random: randn!
function blockdiagonal(f!, elt::Type, axes::Tuple)
a = BlockSparseArray{elt}(axes)
for i in 1:minimum(blocksize(a))
b = Block(ntuple(Returns(i), ndims(a)))
a[b] = f!(a[b])
end
return a
end
elt = Float64
d_src = blockedrange([4, 4])
d_dest = blockedrange([2, 4, 2])
a_src = blockdiagonal(randn!, elt, (d_src, d_src))
a_dest = blockdiagonal(randn!, elt, (d_dest, d_dest))
a_dest .= 10 .* a_src
which outputs:
julia> a_src
2×2-blocked 8×8 BlockSparseArray{Float64, 2, Matrix{Float64}, NDTensors.SparseArrayDOKs.SparseArrayDOK{Matrix{Float64}, 2, NDTensors.BlockSparseArrays.BlockZero{Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}}, Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}:
-0.405138 0.627248 1.26039 0.152331 │ 0.0 0.0 0.0 0.0
1.26651 -1.318 0.90538 -0.669214 │ 0.0 0.0 0.0 0.0
-0.231649 -1.14072 -0.0183986 0.641401 │ 0.0 0.0 0.0 0.0
0.398392 1.15866 -0.840044 -0.774931 │ 0.0 0.0 0.0 0.0
─────────────────────────────────────────────┼────────────────────────────────────────────
0.0 0.0 0.0 0.0 │ -0.149512 -0.415454 -0.337988 -0.214309
0.0 0.0 0.0 0.0 │ -1.08143 -0.88407 2.10251 0.180943
0.0 0.0 0.0 0.0 │ -0.265952 -0.441355 1.02287 -0.343253
0.0 0.0 0.0 0.0 │ -1.94984 0.913825 -0.61027 -0.232461
julia> a_dest
3×3-blocked 8×8 BlockSparseArray{Float64, 2, Matrix{Float64}, NDTensors.SparseArrayDOKs.SparseArrayDOK{Matrix{Float64}, 2, NDTensors.BlockSparseArrays.BlockZero{Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}}, Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}:
1.89965 -0.957095 │ 0.0 0.0 0.0 0.0 │ 0.0 0.0
-0.366502 0.0968234 │ 0.0 0.0 0.0 0.0 │ 0.0 0.0
───────────────────────┼───────────────────────────────────────────────┼──────────────────────
0.0 0.0 │ 0.366896 0.337547 -0.698596 -0.278881 │ 0.0 0.0
0.0 0.0 │ -0.128684 -0.14473 0.751413 -0.561558 │ 0.0 0.0
0.0 0.0 │ -0.369947 0.229541 0.949884 -0.996651 │ 0.0 0.0
0.0 0.0 │ -0.422792 -0.339941 0.322883 -0.0676305 │ 0.0 0.0
───────────────────────┼───────────────────────────────────────────────┼──────────────────────
0.0 0.0 │ 0.0 0.0 0.0 0.0 │ 0.546015 0.0357726
0.0 0.0 │ 0.0 0.0 0.0 0.0 │ -0.763948 1.39853
julia> a_dest .= 10 .* a_src
3×3-blocked 8×8 BlockSparseArray{Float64, 2, Matrix{Float64}, NDTensors.SparseArrayDOKs.SparseArrayDOK{Matrix{Float64}, 2, NDTensors.BlockSparseArrays.BlockZero{Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}}, Tuple{BlockArrays.BlockedUnitRange{Vector{Int64}}, BlockArrays.BlockedUnitRange{Vector{Int64}}}}:
-4.05138 6.27248 │ 12.6039 1.52331 0.0 0.0 │ 0.0 0.0
12.6651 -13.18 │ 9.0538 -6.69214 0.0 0.0 │ 0.0 0.0
─────────────────────┼───────────────────────────────────────────────┼────────────────────
-2.31649 -11.4072 │ -0.183986 6.41401 -0.698596 -0.278881 │ 0.0 0.0
3.98392 11.5866 │ -8.40044 -7.74931 0.751413 -0.561558 │ 0.0 0.0
0.0 0.0 │ -0.369947 0.229541 -1.49512 -4.15454 │ -3.37988 -2.14309
0.0 0.0 │ -0.422792 -0.339941 -10.8143 -8.8407 │ 21.0251 1.80943
─────────────────────┼───────────────────────────────────────────────┼────────────────────
0.0 0.0 │ 0.0 0.0 -2.65952 -4.41355 │ 10.2287 -3.43253
0.0 0.0 │ 0.0 0.0 -19.4984 9.13825 │ -6.1027 -2.32461
so it can handle cases where the blocking doesn't line up, while before this would have errored.
It works by first creating axes with a finer blocking structure that lines up with the blocking structure of the destination and source arrays, and then applies block-wise operations using that finer blocking structure.
Codecov Report
All modified and coverable lines are covered by tests :white_check_mark:
Project coverage is 53.78%. Comparing base (
f4ad958) to head (38c717f). Report is 1 commits behind head on main.
:exclamation: Current head 38c717f differs from pull request most recent head bf5e92c. Consider uploading reports for the commit bf5e92c to get more accurate results
:exclamation: Your organization needs to install the Codecov GitHub app to enable full functionality.
Additional details and impacted files
@@ Coverage Diff @@
## main #1332 +/- ##
===========================================
- Coverage 84.40% 53.78% -30.62%
===========================================
Files 100 99 -1
Lines 8581 8528 -53
===========================================
- Hits 7243 4587 -2656
- Misses 1338 3941 +2603
:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.
Very cool!
@ogauthe @emstoudenmire I'm merging this.
The status is that you should be able to perform arbitrary broadcasting operations (adding, scalar multiplication, permutations) of block sparse arrays, as well as perform pretty general slicing operations, and it should preserve block structures and block labels stored on the axes (including symmetry labels). It also needs more tests, but I want to merge this now as a starting point for future work. I'm sure there will be corner cases and bugs to work out as it is put into practice but I think it is a good starting point.