pycanon icon indicating copy to clipboard operation
pycanon copied to clipboard

pyCANON is a Python library and CLI to assess the values of the parameters associated with the most common privacy-preserving techniques.

pyCANON

|License| |Documentation Status| |Pipeline Status|

pyCANON is a Python library and CLI to assess the values of the parameters associated with the most common privacy-preserving techniques via anonymization.

Authors: Judith Sáinz-Pardo Díaz and Álvaro López García (IFCA - CSIC).

Installation

We recommend to use Python3 with virtualenv <https://virtualenv.pypa.io/en/latest/>__:

::

virtualenv .venv -p python3 source .venv/bin/activate

Then run the following command to install the library and all its requirements:

::

pip install pycanon

If you also want to install the functionality that allows to generate PDF files for the reports, install as follows ::

pip install pycanon[PDF]

Documentation

The pyCANON documentation is hosted on Read the Docs <https://pycanon.readthedocs.io/>__.

Getting started

Example using the adult dataset <https://archive.ics.uci.edu/ml/datasets/adult>__:

.. code:: python

import pandas as pd from pycanon import anonymity, report

FILE_NAME = "adult.csv" QI = ["age", "education", "occupation", "relationship", "sex", "native-country"] SA = ["salary-class"] DATA = pd.read_csv(FILE_NAME)

Calculate k for k-anonymity:

k = anonymity.k_anonymity(DATA, QI)

Print the anonymity report:

report.print_report(DATA, QI, SA)

Description

pyCANON allows to check if the following privacy-preserving techniques are verified and the value of the parameters associated with each of them.

+---------------------------+-----------------------------+------------+-----------------------------------------------------+ | Technique | pyCANON function | Parameters | Notes | +===========================+=============================+============+=====================================================+ | k-anonymity | k_anonymity | k: int | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | (α, k)-anonymity | alpha_k_anonymity | α: float | | | | | k:int | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | ℓ-diversity | l_diversity | : int | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | Entropy ℓ-diversity | entropy_l_diversity | : int | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | Recursive (c,ℓ)-diversity | recursive_c_l_diversity | c: int | Not calculated if ℓ=1 | | | | : int | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | Basic β-likeness | basic_beta_likeness | β: float | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | Enhanced β-likeness | enhanced_beta_likeness | β: float | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | t-closeness | t_closeness | t: float | For numerical attributes the definition of the EMD | | | | | (one-dimensional Earth Mover’s Distance) is used. | | | | | For categorical attributes, the metric "Equal | | | | | Distance" is used. | +---------------------------+-----------------------------+------------+-----------------------------------------------------+ | δ-disclosure privacy | delta_disclosure | δ: float | | +---------------------------+-----------------------------+------------+-----------------------------------------------------+

More information can be found in this paper <https://www.nature.com/articles/s41597-022-01894-2>__.

In addition, a report can be obtained including information on the equivalence claases and the usefulness of the data. In particular, for the latter the following three classically used metrics are implemented (as defined in the documentation <https://pycanon.readthedocs.io/>__): average equivalence class size, classification metric and discernability metric.

Citation

If you are using pyCANON you can cite it as follows::

@article{sainzpardo2022pycanon, title={A Python library to check the level of anonymity of a dataset}, author={S{'a}inz-Pardo D{'\i}az, Judith and L{'o}pez Garc{'\i}a, {'A}lvaro}, journal={Scientific Data}, volume={9}, number={1}, pages={785}, year={2022}, publisher={Nature Publishing Group UK London}}

Acknowledgments

The authors would like to thank the funding through the European Union - NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Global Health Platform (PTI+ Salud Global) and the support from the project AI4EOSC “Artificial Intelligence for the European Open Science Cloud” that has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement number 101058593.

.. |License| image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg :target: https://gitlab.ifca.es/sainzj/check-anonymity/-/blob/main/LICENSE .. |Documentation Status| image:: https://readthedocs.org/projects/pycanon/badge/?version=latest :target: https://pycanon.readthedocs.io/en/latest/?badge=latest .. |Pipeline Status| image:: https://gitlab.ifca.es/privacy-security/pycanon/badges/main/pipeline.svg :target: https://gitlab.ifca.es/privacy-security/pycanon/-/pipelines