pycanon
pycanon copied to clipboard
pyCANON is a Python library and CLI to assess the values of the parameters associated with the most common privacy-preserving techniques.
pyCANON
|License| |Documentation Status| |Pipeline Status|
pyCANON is a Python library and CLI to assess the values of the parameters associated with the most common privacy-preserving techniques via anonymization.
Authors: Judith Sáinz-Pardo Díaz and Álvaro López García (IFCA - CSIC).
Installation
We recommend to use Python3 with
virtualenv <https://virtualenv.pypa.io/en/latest/>__:
::
virtualenv .venv -p python3 source .venv/bin/activate
Then run the following command to install the library and all its requirements:
::
pip install pycanon
If you also want to install the functionality that allows to generate PDF files for the reports, install as follows ::
pip install pycanon[PDF]
Documentation
The pyCANON documentation is hosted on Read the Docs <https://pycanon.readthedocs.io/>__.
Getting started
Example using the adult dataset <https://archive.ics.uci.edu/ml/datasets/adult>__:
.. code:: python
import pandas as pd from pycanon import anonymity, report
FILE_NAME = "adult.csv" QI = ["age", "education", "occupation", "relationship", "sex", "native-country"] SA = ["salary-class"] DATA = pd.read_csv(FILE_NAME)
Calculate k for k-anonymity:
k = anonymity.k_anonymity(DATA, QI)
Print the anonymity report:
report.print_report(DATA, QI, SA)
Description
pyCANON allows to check if the following privacy-preserving techniques are verified and the value of the parameters associated with each of them.
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| Technique | pyCANON function | Parameters | Notes |
+===========================+=============================+============+=====================================================+
| k-anonymity | k_anonymity | k: int | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| (α, k)-anonymity | alpha_k_anonymity | α: float | |
| | | k:int | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| ℓ-diversity | l_diversity | ℓ: int | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| Entropy ℓ-diversity | entropy_l_diversity | ℓ: int | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| Recursive (c,ℓ)-diversity | recursive_c_l_diversity | c: int | Not calculated if ℓ=1 |
| | | ℓ: int | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| Basic β-likeness | basic_beta_likeness | β: float | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| Enhanced β-likeness | enhanced_beta_likeness | β: float | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| t-closeness | t_closeness | t: float | For numerical attributes the definition of the EMD |
| | | | (one-dimensional Earth Mover’s Distance) is used. |
| | | | For categorical attributes, the metric "Equal |
| | | | Distance" is used. |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
| δ-disclosure privacy | delta_disclosure | δ: float | |
+---------------------------+-----------------------------+------------+-----------------------------------------------------+
More information can be found in this paper <https://www.nature.com/articles/s41597-022-01894-2>__.
In addition, a report can be obtained including information on the equivalence claases and the
usefulness of the data. In particular, for the latter the following three classically used metrics
are implemented (as defined in the documentation <https://pycanon.readthedocs.io/>__):
average equivalence class size, classification metric and discernability metric.
Citation
If you are using pyCANON you can cite it as follows::
@article{sainzpardo2022pycanon, title={A Python library to check the level of anonymity of a dataset}, author={S{'a}inz-Pardo D{'\i}az, Judith and L{'o}pez Garc{'\i}a, {'A}lvaro}, journal={Scientific Data}, volume={9}, number={1}, pages={785}, year={2022}, publisher={Nature Publishing Group UK London}}
Acknowledgments
The authors would like to thank the funding through the European Union - NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Global Health Platform (PTI+ Salud Global) and the support from the project AI4EOSC “Artificial Intelligence for the European Open Science Cloud” that has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement number 101058593.
.. |License| image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg :target: https://gitlab.ifca.es/sainzj/check-anonymity/-/blob/main/LICENSE .. |Documentation Status| image:: https://readthedocs.org/projects/pycanon/badge/?version=latest :target: https://pycanon.readthedocs.io/en/latest/?badge=latest .. |Pipeline Status| image:: https://gitlab.ifca.es/privacy-security/pycanon/badges/main/pipeline.svg :target: https://gitlab.ifca.es/privacy-security/pycanon/-/pipelines