TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi icon indicating copy to clipboard operation
TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi copied to clipboard

Not able to change model to EfficientDet-D1 or D2

Open drelvenkee opened this issue 2 years ago • 1 comments
trafficstars

Hi EJ

I am trying to change the model to D1 or D2. But it is not working. I received this error ValueError: Cannot assign value to variable ' WeightSharedConvolutionalBoxPredictor/BoxPredictionTower/conv2d_0/BatchNorm/feature_0/beta:0': Shape mismatch.The variable shape (88,), and the assigned value shape (112,) are incompatible.

Possible to help? Here is my code.

chosen_model = 'efficientdet-d2'

MODELS_CONFIG = { 'efficientdet-d2': { 'model_name': 'efficientdet_d2_coco17_tpu-32', 'base_pipeline_file': 'ssd_efficientdet_d2_768x768_coco17_tpu-8.config', 'pretrained_checkpoint': 'efficientdet_d2_coco17_tpu-32.tar.gz', } }

model_name = MODELS_CONFIG[chosen_model]['model_name'] pretrained_checkpoint = MODELS_CONFIG[chosen_model]['pretrained_checkpoint'] base_pipeline_file = MODELS_CONFIG[chosen_model]['base_pipeline_file']

drelvenkee avatar Oct 28 '23 04:10 drelvenkee

Hello did you solve the problem for this? if so, how did you add the efficientdet-d2?

sangyo1 avatar Apr 09 '24 21:04 sangyo1