TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi icon indicating copy to clipboard operation
TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi copied to clipboard

Different color for each object

Open 2Sicc opened this issue 4 years ago • 0 comments
trafficstars

Hello, Can someone help me to modify this existing code to use different color for the bounding box i want to detect? For example: If a person detect bounding box will be red and if animals or pets detect will be green and other object would be blue, been exploring for a week still no luck for modifying it if anyone can explain or help would be much appreciated. Thanks!

######## Webcam Object Detection Using Tensorflow-trained Classifier #########

Author: Evan Juras

Date: 10/27/19

Description:

This program uses a TensorFlow Lite model to perform object detection on a live webcam

feed. It draws boxes and scores around the objects of interest in each frame from the

webcam. To improve FPS, the webcam object runs in a separate thread from the main program.

This script will work with either a Picamera or regular USB webcam.

This code is based off the TensorFlow Lite image classification example at:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py

I added my own method of drawing boxes and labels using OpenCV.

Import packages

import os import argparse import cv2 import numpy as np import sys import time from threading import Thread import importlib.util

Define VideoStream class to handle streaming of video from webcam in separate processing thread

Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/

class VideoStream: """Camera object that controls video streaming from the Picamera""" def init(self,resolution=(640,480),framerate=30): # Initialize the PiCamera and the camera image stream self.stream = cv2.VideoCapture(0) ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) ret = self.stream.set(3,resolution[0]) ret = self.stream.set(4,resolution[1])

    # Read first frame from the stream
    (self.grabbed, self.frame) = self.stream.read()

# Variable to control when the camera is stopped
    self.stopped = False

def start(self):
# Start the thread that reads frames from the video stream
    Thread(target=self.update,args=()).start()
    return self

def update(self):
    # Keep looping indefinitely until the thread is stopped
    while True:
        # If the camera is stopped, stop the thread
        if self.stopped:
            # Close camera resources
            self.stream.release()
            return

        # Otherwise, grab the next frame from the stream
        (self.grabbed, self.frame) = self.stream.read()

def read(self):
# Return the most recent frame
    return self.frame

def stop(self):
# Indicate that the camera and thread should be stopped
    self.stopped = True

Define and parse input arguments

parser = argparse.ArgumentParser() parser.add_argument('--modeldir', help='Folder the .tflite file is located in', required=True) parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite', default='detect.tflite') parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt', default='labelmap.txt') parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects', default=0.5) parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.', default='1280x720') parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection', action='store_true')

args = parser.parse_args()

MODEL_NAME = args.modeldir GRAPH_NAME = args.graph LABELMAP_NAME = args.labels min_conf_threshold = float(args.threshold) resW, resH = args.resolution.split('x') imW, imH = int(resW), int(resH) use_TPU = args.edgetpu

Import TensorFlow libraries

If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow

If using Coral Edge TPU, import the load_delegate library

pkg = importlib.util.find_spec('tflite_runtime') if pkg: from tflite_runtime.interpreter import Interpreter if use_TPU: from tflite_runtime.interpreter import load_delegate else: from tensorflow.lite.python.interpreter import Interpreter if use_TPU: from tensorflow.lite.python.interpreter import load_delegate

If using Edge TPU, assign filename for Edge TPU model

if use_TPU: # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite' if (GRAPH_NAME == 'detect.tflite'): GRAPH_NAME = 'edgetpu.tflite'

Get path to current working directory

CWD_PATH = os.getcwd()

Path to .tflite file, which contains the model that is used for object detection

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)

Path to label map file

PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)

Load the label map

with open(PATH_TO_LABELS, 'r') as f: labels = [line.strip() for line in f.readlines()]

Have to do a weird fix for label map if using the COCO "starter model" from

https://www.tensorflow.org/lite/models/object_detection/overview

First label is '???', which has to be removed.

if labels[0] == '???': del(labels[0])

Load the Tensorflow Lite model.

If using Edge TPU, use special load_delegate argument

if use_TPU: interpreter = Interpreter(model_path=PATH_TO_CKPT, experimental_delegates=[load_delegate('libedgetpu.so.1.0')]) print(PATH_TO_CKPT) else: interpreter = Interpreter(model_path=PATH_TO_CKPT)

interpreter.allocate_tensors()

Get model details

input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() height = input_details[0]['shape'][1] width = input_details[0]['shape'][2]

floating_model = (input_details[0]['dtype'] == np.float32)

input_mean = 127.5 input_std = 127.5

Initialize frame rate calculation

frame_rate_calc = 1 freq = cv2.getTickFrequency()

Initialize video stream

videostream = VideoStream(resolution=(imW,imH),framerate=30).start() time.sleep(1)

#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True): while True:

# Start timer (for calculating frame rate)
t1 = cv2.getTickCount()

# Grab frame from video stream
frame1 = videostream.read()

# Acquire frame and resize to expected shape [1xHxWx3]
frame = frame1.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)

# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
    input_data = (np.float32(input_data) - input_mean) / input_std

# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()

# Retrieve detection results
boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects
#num = interpreter.get_tensor(output_details[3]['index'])[0]  # Total number of detected objects (inaccurate and not needed)

# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
    if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):

        # Get bounding box coordinates and draw box
        # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
        ymin = int(max(1,(boxes[i][0] * imH)))
        xmin = int(max(1,(boxes[i][1] * imW)))
        ymax = int(min(imH,(boxes[i][2] * imH)))
        xmax = int(min(imW,(boxes[i][3] * imW)))
        
        cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

        # Draw label
        object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
        label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
        labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
        label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
        cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
        cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text

# Draw framerate in corner of frame
cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)

# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)

# Calculate framerate
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1

# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
    break

Clean up

cv2.destroyAllWindows() videostream.stop()

2Sicc avatar Nov 09 '21 17:11 2Sicc