MVIMP icon indicating copy to clipboard operation
MVIMP copied to clipboard

colab DAIN THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=405 error=11 : invalid argument

Open inkitori opened this issue 5 years ago • 1 comments

video is 1920x1080 and 60fps using arguments !python3 inference_dain.py --input_video test.mp4 --time_step 0.5 -hr

ffmpeg -hide_banner -loglevel warning -threads 4 -i /content/MVIMP/Data/Input/test.mp4 /content/MVIMP/Data/Input/%8d.png
The video-image extracting job is done.

--------------------SUMMARY--------------------
Current input video file is test.mp4,
test.mp4's fps is 30.00,
test.mp4 has 14854 frames.
Now we will process this video to 60.0 fps.
Frame split method will be used.
--------------------NOW END--------------------


python3 -W ignore vfi_helper.py --src /content/MVIMP/Data/Input --dst /content/MVIMP/Data/Output --time_step 0.5 --high_resolution 
revise the unique id to a random numer 50445
Namespace(SAVED_MODEL='./model_weights/best.pth', alpha=[0.0, 1.0], arg='./model_weights/50445-Wed-Oct-28-22:05/args.txt', batch_size=1, channels=3, ctx_lr_coe=1.0, datasetName='Vimeo_90K_interp', datasetPath='', dataset_split=97, debug=False, depth_lr_coe=0.001, dst='/content/MVIMP/Data/Output', dtype=<class 'torch.cuda.FloatTensor'>, epsilon=1e-06, factor=0.2, filter_lr_coe=1.0, filter_size=4, flow_lr_coe=0.01, force=False, high_resolution=True, log='./model_weights/50445-Wed-Oct-28-22:05/log.txt', lr=0.002, netName='DAIN_slowmotion', no_date=False, numEpoch=100, occ_lr_coe=1.0, patience=5, rectify_lr=0.001, save_path='./model_weights/50445-Wed-Oct-28-22:05', save_which=1, seed=1, src='/content/MVIMP/Data/Input', time_step=0.5, uid=None, use_cuda=True, use_cudnn=1, weight_decay=0, workers=8)
cudnn is used
Interpolate 1 frames
The model weight is: ./model_weights/best.pth
************** current handling frame from /content/MVIMP/Data/Input. **************
************** current time_step is 0.5 **************
************** current output_dir is /content/MVIMP/Data/Output **************
************** high resolution method used. **************
  0% 0/14853 [00:00<?, ?it/s]THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=405 error=11 : invalid argument
  0% 0/14853 [00:00<?, ?it/s]
Traceback (most recent call last):
  File "vfi_helper.py", line 204, in <module>
    input_dir=args.src, output_dir=args.dst, time_step=args.time_step,
  File "vfi_helper.py", line 45, in continue_frames_insertion_helper
    time_step=time_step,
  File "vfi_helper.py", line 81, in frames_insertion_helper
    ym_0_0 = model_inference_helper(im_0[:, 0::2, 0::2], im_1[:, 0::2, 0::2])
  File "vfi_helper.py", line 150, in model_inference_helper
    y_s, _, _ = model(torch.stack((x_0, x_1), dim=0))
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 489, in __call__
    result = self.forward(*input, **kwargs)
  File "/content/MVIMP/third_party/DAIN/networks/DAIN_slowmotion.py", line 138, in forward
    (cur_filter_input[:, :3, ...], cur_filter_input[:, 3:, ...]), dim=0
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 489, in __call__
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 489, in __call__
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py", line 320, in forward
    self.padding, self.dilation, self.groups)
RuntimeError: cuda runtime error (11) : invalid argument at /pytorch/aten/src/THC/THCGeneral.cpp:405
ffmpeg -hide_banner -loglevel warning -threads 4 -r 60.0 -f image2 -i /content/MVIMP/Data/Input/%10d.png -y -c:v libx264 -preset slow -crf 8 /content/MVIMP/Data/Output/test-60.0.mp4
The image-video fusion job is done.```

inkitori avatar Oct 28 '20 22:10 inkitori

Have you tried to inference the demo? What is the result?

CyFeng16 avatar Oct 30 '20 01:10 CyFeng16