CellSeg3D
CellSeg3D copied to clipboard
TypeError: reshape() got an unexpected keyword argument 'newshape' when running inference
Hello,
I am getting the error TypeError: reshape() got an unexpected keyword argument 'newshape' when I use CellSeg3D to perform inference on my data using a pretrained model.
My sequence of actions:
- Open Napari on a folder that consists of an image stack
- Go to Plugins -> CellSeg3D -> Inference
- In the widget that pops up, without changing any of the default parameters, click "Start"
Then after about 30 seconds, napari might crash with a segmentation fault. Even in the case that napari doesn't crash, nothing seems to change (no inferred images are created). This is the log in the terminal:
(cellseg) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [229]
└─[$] napari cellseg_test_stack [8:24:32]
/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/pytools/persistent_dict.py:63: RecommendedHashNotFoundWarning: Unable to import recommended hash 'siphash24.siphash13', falling back to 'hashlib.sha256'. Run 'python3 -m pip install siphash24' to install the recommended hash.!
08:24:48 INFO pydensecrf not installed, CRF post-processing will not be available. Please install by running : pip install pydensecrf@git+https://github.com/lucasb-eyer/pydensecrf.git#egg=masterThis is not a hard requirement, you do not need it to install it unless you want to use the CRF post-processing step.
08:24:48 INFO wandb not installed, wandb config will not be taken into account
08:24:50 INFO Starting...
08:24:50 INFO ********************
08:24:50 INFO Worker started at 08:24:50
08:24:50 INFO Saving results to : /home/yul4024/cellseg3d/inference
08:24:50 INFO Worker is running...
08:24:50 INFO MODEL DIMS : 64
08:24:50 INFO Model name : SegResNet
08:24:50 INFO Instantiating model...
08:24:50 INFO ********************
08:24:50 INFO Weight file SegResNet_latest.pth already exists, skipping download
08:24:50 INFO Loading weights...
08:24:51 ERROR reshape() got an unexpected keyword argument 'newshape'
Traceback (most recent call last):
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/napari_cellseg3d/code_models/worker_inference.py", line 969, in inference
input_image = self.load_layer()
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/napari_cellseg3d/code_models/worker_inference.py", line 283, in load_layer
volume = np.reshape(volume, newshape=(1, *volume.shape))
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/dask/array/core.py", line 1753, in __array_function__
return da_func(*args, **kwargs)
TypeError: reshape() got an unexpected keyword argument 'newshape'
08:24:51 INFO Weights status : <All keys matched successfully>
08:24:51 INFO Done
08:24:51 INFO --------------------
08:24:51 INFO Parameters summary :
08:24:51 INFO Model is : SegResNet
08:24:51 INFO Window inference is disabled
08:24:51 INFO Dataset loaded on cuda:0 device
08:24:51 INFO --------------------
08:24:51 INFO Loading layer
08:24:51 INFO
Worker finished at 08:24:51
08:24:51 INFO ********************
08:24:51 INFO Emptying cache...
08:24:51 INFO Attempt complete : Cache emptied
Here is how I installed these packages. I uninstalled and reinstalled this environment in this exact manner to make sure it was not a one-time corrupt install of Numpy:
(base) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [206]
└─[$] mamba create -n cellseg python=3.9 napari=0.4 pyqt [8:01:37]
Looking for: ['python=3.9', 'napari=0.4', 'pyqt']
conda-forge/linux-64 Using cache
conda-forge/noarch Using cache
Transaction
Prefix: /home/yul4024/miniforge3/envs/cellseg
Updating specs:
- python=3.9
- napari=0.4
- pyqt
Package Version Build Channel Size
──────────────────────────────────────────────────────────────────────────────────────────────
Install:
──────────────────────────────────────────────────────────────────────────────────────────────
+ _libgcc_mutex 0.1 conda_forge conda-forge Cached
+ python_abi 3.9 5_cp39 conda-forge Cached
+ libglvnd 1.7.0 ha4b6fd6_0 conda-forge Cached
+ ca-certificates 2024.8.30 hbcca054_0 conda-forge Cached
+ ld_impl_linux-64 2.43 h712a8e2_1 conda-forge Cached
+ libgomp 14.1.0 h77fa898_1 conda-forge Cached
+ libegl 1.7.0 ha4b6fd6_0 conda-forge Cached
+ _openmp_mutex 4.5 2_gnu conda-forge Cached
+ libgcc 14.1.0 h77fa898_1 conda-forge Cached
+ libbrotlicommon 1.1.0 hb9d3cd8_2 conda-forge Cached
+ xorg-libxdmcp 1.1.5 hb9d3cd8_0 conda-forge Cached
+ pthread-stubs 0.4 hb9d3cd8_1002 conda-forge Cached
+ xorg-xf86vidmodeproto 2.3.1 hb9d3cd8_1003 conda-forge Cached
+ libgfortran5 14.1.0 hc5f4f2c_1 conda-forge Cached
+ xorg-xorgproto 2024.1 hb9d3cd8_1 conda-forge Cached
+ xorg-xextproto 7.3.0 hb9d3cd8_1004 conda-forge Cached
+ xorg-libice 1.1.1 hb9d3cd8_1 conda-forge Cached
+ xorg-libxau 1.0.11 hb9d3cd8_1 conda-forge Cached
+ libexpat 2.6.3 h5888daf_0 conda-forge Cached
+ libstdcxx 14.1.0 hc0a3c3a_1 conda-forge Cached
+ libgcc-ng 14.1.0 h69a702a_1 conda-forge Cached
+ openssl 3.3.2 hb9d3cd8_0 conda-forge Cached
+ libbrotlienc 1.1.0 hb9d3cd8_2 conda-forge Cached
+ libbrotlidec 1.1.0 hb9d3cd8_2 conda-forge Cached
+ libgfortran 14.1.0 h69a702a_1 conda-forge Cached
+ libxcb 1.17.0 h8a09558_0 conda-forge Cached
+ expat 2.6.3 h5888daf_0 conda-forge Cached
+ zlib-ng 2.2.2 h5888daf_0 conda-forge Cached
+ zfp 1.0.1 h5888daf_2 conda-forge Cached
+ libstdcxx-ng 14.1.0 h4852527_1 conda-forge Cached
+ rav1e 0.6.6 he8a937b_2 conda-forge Cached
+ dav1d 1.2.1 hd590300_0 conda-forge Cached
+ jxrlib 1.1 hd590300_3 conda-forge Cached
+ giflib 5.2.2 hd590300_0 conda-forge Cached
+ libdeflate 1.21 h4bc722e_0 conda-forge Cached
+ libxcrypt 4.4.36 hd590300_1 conda-forge Cached
+ bzip2 1.0.8 h4bc722e_7 conda-forge Cached
+ yaml 0.2.5 h7f98852_2 conda-forge Cached
+ libjpeg-turbo 3.0.0 hd590300_1 conda-forge Cached
+ ncurses 6.5 he02047a_1 conda-forge Cached
+ libsodium 1.0.20 h4ab18f5_0 conda-forge Cached
+ libwebp-base 1.4.0 hd590300_0 conda-forge Cached
+ attr 2.5.1 h166bdaf_1 conda-forge Cached
+ libffi 3.4.2 h7f98852_5 conda-forge Cached
+ libgettextpo 0.22.5 he02047a_3 conda-forge Cached
+ gettext-tools 0.22.5 he02047a_3 conda-forge Cached
+ libopus 1.3.1 h7f98852_1 conda-forge Cached
+ lame 3.100 h166bdaf_1003 conda-forge Cached
+ libzlib 1.3.1 h4ab18f5_1 conda-forge Cached
+ libiconv 1.17 hd590300_2 conda-forge Cached
+ libpciaccess 0.18 hd590300_0 conda-forge Cached
+ keyutils 1.6.1 h166bdaf_0 conda-forge Cached
+ libogg 1.3.5 h4ab18f5_0 conda-forge Cached
+ alsa-lib 1.2.12 h4ab18f5_0 conda-forge Cached
+ libuuid 2.38.1 h0b41bf4_0 conda-forge Cached
+ libnsl 2.0.1 hd590300_0 conda-forge Cached
+ xz 5.2.6 h166bdaf_0 conda-forge Cached
+ mysql-common 9.0.1 h266115a_1 conda-forge Cached
+ libevent 2.1.12 hf998b51_1 conda-forge Cached
+ brotli-bin 1.1.0 hb9d3cd8_2 conda-forge Cached
+ libgfortran-ng 14.1.0 h69a702a_1 conda-forge Cached
+ xorg-libx11 1.8.10 h4f16b4b_0 conda-forge Cached
+ xcb-util-wm 0.4.2 hb711507_0 conda-forge Cached
+ xcb-util-renderutil 0.3.10 hb711507_0 conda-forge Cached
+ xcb-util-keysyms 0.4.1 hb711507_0 conda-forge Cached
+ xcb-util 0.4.1 hb711507_2 conda-forge Cached
+ libzopfli 1.0.3 h9c3ff4c_0 conda-forge Cached
+ svt-av1 2.2.1 h5888daf_0 conda-forge Cached
+ aom 3.9.1 hac33072_0 conda-forge Cached
+ libhwy 1.1.0 h00ab1b0_0 conda-forge Cached
+ snappy 1.2.1 ha2e4443_0 conda-forge Cached
+ libaec 1.1.3 h59595ed_0 conda-forge Cached
+ charls 2.4.2 h59595ed_0 conda-forge Cached
+ lerc 4.0.0 h27087fc_0 conda-forge Cached
+ graphite2 1.3.13 h59595ed_1003 conda-forge Cached
+ libasprintf 0.22.5 he8f35ee_3 conda-forge Cached
+ mpg123 1.32.6 h59595ed_0 conda-forge Cached
+ lz4-c 1.9.4 hcb278e6_0 conda-forge Cached
+ pixman 0.43.2 h59595ed_0 conda-forge Cached
+ nspr 4.35 h27087fc_0 conda-forge Cached
+ icu 75.1 he02047a_0 conda-forge Cached
+ libedit 3.1.20191231 he28a2e2_2 conda-forge Cached
+ readline 8.2 h8228510_1 conda-forge Cached
+ libcap 2.69 h0f662aa_0 conda-forge Cached
+ libgettextpo-devel 0.22.5 he02047a_3 conda-forge Cached
+ tk 8.6.13 noxft_h4845f30_101 conda-forge Cached
+ pcre2 10.44 hba22ea6_2 conda-forge Cached
+ zlib 1.3.1 h4ab18f5_1 conda-forge Cached
+ zstd 1.5.6 ha6fb4c9_0 conda-forge Cached
+ libpng 1.6.44 hadc24fc_0 conda-forge Cached
+ libsqlite 3.46.1 hadc24fc_0 conda-forge Cached
+ libdrm 2.4.123 hb9d3cd8_0 conda-forge Cached
+ libvorbis 1.3.7 h9c3ff4c_0 conda-forge Cached
+ xorg-libsm 1.2.4 he73a12e_1 conda-forge Cached
+ brotli 1.1.0 hb9d3cd8_2 conda-forge Cached
+ libopenblas 0.3.27 pthreads_hac2b453_1 conda-forge Cached
+ xkeyboard-config 2.42 h4ab18f5_0 conda-forge Cached
+ xorg-libxrender 0.9.11 hb9d3cd8_1 conda-forge Cached
+ xorg-libxext 1.3.6 hb9d3cd8_0 conda-forge Cached
+ libglx 1.7.0 ha4b6fd6_0 conda-forge Cached
+ xcb-util-image 0.4.0 hb711507_2 conda-forge Cached
+ libavif16 1.1.1 h104a339_1 conda-forge Cached
+ libjxl 0.11.0 hdb8da77_0 conda-forge Cached
+ libasprintf-devel 0.22.5 he8f35ee_3 conda-forge Cached
+ libxml2 2.12.7 he7c6b58_4 conda-forge Cached
+ krb5 1.21.3 h659f571_0 conda-forge Cached
+ libglib 2.82.1 h2ff4ddf_0 conda-forge Cached
+ c-blosc2 2.15.1 hc57e6cf_0 conda-forge Cached
+ blosc 1.21.6 hef167b5_0 conda-forge Cached
+ libtiff 4.7.0 h6565414_0 conda-forge Cached
+ mysql-libs 9.0.1 he0572af_1 conda-forge Cached
+ freetype 2.12.1 h267a509_2 conda-forge Cached
+ nss 3.105 hd34e28f_0 conda-forge Cached
+ brunsli 0.1 h9c3ff4c_0 conda-forge Cached
+ libblas 3.9.0 24_linux64_openblas conda-forge Cached
+ xorg-libxxf86vm 1.1.5 hb9d3cd8_2 conda-forge Cached
+ libgl 1.7.0 ha4b6fd6_0 conda-forge Cached
+ gettext 0.22.5 he02047a_3 conda-forge Cached
+ libllvm15 15.0.7 hb3ce162_4 conda-forge Cached
+ libllvm19 19.1.0 ha7bfdaf_0 conda-forge Cached
+ libxkbcommon 1.7.0 h2c5496b_1 conda-forge Cached
+ libpq 16.4 h2d7952a_2 conda-forge Cached
+ zeromq 4.3.5 ha4adb4c_5 conda-forge Cached
+ libcups 2.3.3 h4637d8d_4 conda-forge Cached
+ glib-tools 2.82.1 h4833e2c_0 conda-forge Cached
+ dbus 1.13.6 h5008d03_3 conda-forge Cached
+ openjpeg 2.5.2 h488ebb8_0 conda-forge Cached
+ lcms2 2.16 hb7c19ff_0 conda-forge Cached
+ fontconfig 2.14.2 h14ed4e7_0 conda-forge Cached
+ libcblas 3.9.0 24_linux64_openblas conda-forge Cached
+ liblapack 3.9.0 24_linux64_openblas conda-forge Cached
+ libgpg-error 1.50 h4f305b6_0 conda-forge Cached
+ libflac 1.4.3 h59595ed_0 conda-forge Cached
+ libclang-cpp15 15.0.7 default_h127d8a8_5 conda-forge Cached
+ libclang13 19.1.0 default_h9c6a7e4_0 conda-forge Cached
+ libgcrypt 1.11.0 h4ab18f5_1 conda-forge Cached
+ libsndfile 1.2.2 hc60ed4a_1 conda-forge Cached
+ libsystemd0 256.6 h2774228_0 conda-forge Cached
+ pulseaudio-client 17.0 hb77b528_0 conda-forge Cached
+ font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge Cached
+ font-ttf-inconsolata 3.000 h77eed37_0 conda-forge Cached
+ font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge Cached
+ font-ttf-ubuntu 0.83 h77eed37_3 conda-forge Cached
+ tzdata 2024a h8827d51_1 conda-forge Cached
+ fonts-conda-forge 1 0 conda-forge Cached
+ fonts-conda-ecosystem 1 0 conda-forge Cached
+ python 3.9.20 h13acc7a_1_cpython conda-forge 24MB
+ cairo 1.18.0 hebfffa5_3 conda-forge Cached
+ harfbuzz 9.0.0 hda332d3_1 conda-forge Cached
+ wheel 0.44.0 pyhd8ed1ab_0 conda-forge Cached
+ setuptools 75.1.0 pyhd8ed1ab_0 conda-forge Cached
+ pip 24.2 pyh8b19718_1 conda-forge Cached
+ hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge Cached
+ sphinxcontrib-jsmath 1.0.1 pyhd8ed1ab_0 conda-forge Cached
+ hpack 4.0.0 pyh9f0ad1d_0 conda-forge Cached
+ pycparser 2.22 pyhd8ed1ab_0 conda-forge Cached
+ pysocks 1.7.1 pyha2e5f31_6 conda-forge Cached
+ mdurl 0.1.2 pyhd8ed1ab_0 conda-forge Cached
+ charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge Cached
+ idna 3.10 pyhd8ed1ab_0 conda-forge Cached
+ alabaster 0.7.16 pyhd8ed1ab_0 conda-forge Cached
+ imagesize 1.4.1 pyhd8ed1ab_0 conda-forge Cached
+ docutils 0.21.2 pyhd8ed1ab_0 conda-forge Cached
+ shellingham 1.5.4 pyhd8ed1ab_0 conda-forge Cached
+ parso 0.8.4 pyhd8ed1ab_0 conda-forge Cached
+ tomli-w 1.0.0 pyhd8ed1ab_0 conda-forge Cached
+ snowballstemmer 2.2.0 pyhd8ed1ab_0 conda-forge Cached
+ tabulate 0.9.0 pyhd8ed1ab_1 conda-forge Cached
+ locket 1.0.0 pyhd8ed1ab_0 conda-forge Cached
+ ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge Cached
+ platformdirs 4.3.6 pyhd8ed1ab_0 conda-forge Cached
+ wcwidth 0.2.13 pyhd8ed1ab_0 conda-forge Cached
+ six 1.16.0 pyh6c4a22f_0 conda-forge Cached
+ pure_eval 0.2.3 pyhd8ed1ab_0 conda-forge Cached
+ executing 2.1.0 pyhd8ed1ab_0 conda-forge Cached
+ colorama 0.4.6 pyhd8ed1ab_0 conda-forge Cached
+ fasteners 0.17.3 pyhd8ed1ab_0 conda-forge Cached
+ pytz 2024.1 pyhd8ed1ab_0 conda-forge Cached
+ python-tzdata 2024.2 pyhd8ed1ab_0 conda-forge Cached
+ networkx 3.2.1 pyhd8ed1ab_0 conda-forge Cached
+ tomli 2.0.1 pyhd8ed1ab_0 conda-forge Cached
+ ply 3.11 pyhd8ed1ab_2 conda-forge Cached
+ hsluv 5.0.4 pyhd8ed1ab_0 conda-forge Cached
+ freetype-py 2.5.1 pyhd8ed1ab_0 conda-forge Cached
+ heapdict 1.0.1 pyhd8ed1ab_1 conda-forge Cached
+ in-n-out 0.2.1 pyhd8ed1ab_0 conda-forge Cached
+ cloudpickle 3.0.0 pyhd8ed1ab_0 conda-forge Cached
+ click 8.1.7 unix_pyh707e725_0 conda-forge Cached
+ zipp 3.20.2 pyhd8ed1ab_0 conda-forge Cached
+ nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge Cached
+ exceptiongroup 1.2.2 pyhd8ed1ab_0 conda-forge Cached
+ traitlets 5.14.3 pyhd8ed1ab_0 conda-forge Cached
+ pickleshare 0.7.5 py_1003 conda-forge Cached
+ decorator 5.1.1 pyhd8ed1ab_0 conda-forge Cached
+ attrs 24.2.0 pyh71513ae_0 conda-forge Cached
+ pkgutil-resolve-name 1.3.10 pyhd8ed1ab_1 conda-forge Cached
+ docstring_parser 0.16 pyhd8ed1ab_0 conda-forge Cached
+ typing_extensions 4.12.2 pyha770c72_0 conda-forge Cached
+ toolz 0.12.1 pyhd8ed1ab_0 conda-forge Cached
+ pygments 2.18.0 pyhd8ed1ab_0 conda-forge Cached
+ fsspec 2024.9.0 pyhff2d567_0 conda-forge Cached
+ asciitree 0.3.3 py_2 conda-forge Cached
+ pyopengl 3.1.6 pyhd8ed1ab_1 conda-forge Cached
+ certifi 2024.8.30 pyhd8ed1ab_0 conda-forge Cached
+ packaging 24.1 pyhd8ed1ab_0 conda-forge Cached
+ toml 0.10.2 pyhd8ed1ab_0 conda-forge Cached
+ appdirs 1.4.4 pyh9f0ad1d_0 conda-forge Cached
+ h2 4.1.0 pyhd8ed1ab_0 conda-forge Cached
+ markdown-it-py 3.0.0 pyhd8ed1ab_0 conda-forge Cached
+ jedi 0.19.1 pyhd8ed1ab_0 conda-forge Cached
+ pexpect 4.9.0 pyhd8ed1ab_0 conda-forge Cached
+ prompt-toolkit 3.0.48 pyha770c72_0 conda-forge Cached
+ asttokens 2.4.1 pyhd8ed1ab_0 conda-forge Cached
+ python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge Cached
+ tqdm 4.66.5 pyhd8ed1ab_0 conda-forge Cached
+ babel 2.14.0 pyhd8ed1ab_0 conda-forge Cached
+ pyproject_hooks 1.2.0 pyh7850678_0 conda-forge Cached
+ cachey 0.2.1 pyh9f0ad1d_0 conda-forge Cached
+ importlib_resources 6.4.5 pyhd8ed1ab_0 conda-forge Cached
+ importlib-metadata 8.5.0 pyha770c72_0 conda-forge Cached
+ comm 0.2.2 pyhd8ed1ab_0 conda-forge Cached
+ jupyter_core 5.7.2 pyh31011fe_1 conda-forge Cached
+ matplotlib-inline 0.1.7 pyhd8ed1ab_0 conda-forge Cached
+ typer-slim 0.12.5 pyhd8ed1ab_0 conda-forge Cached
+ typing-extensions 4.12.2 hd8ed1ab_0 conda-forge Cached
+ partd 1.4.2 pyhd8ed1ab_0 conda-forge Cached
+ qtpy 2.4.1 pyhd8ed1ab_0 conda-forge Cached
+ rich 13.8.1 pyhd8ed1ab_0 conda-forge Cached
+ stack_data 0.6.2 pyhd8ed1ab_0 conda-forge Cached
+ python-build 1.2.2 pyhd8ed1ab_0 conda-forge Cached
+ importlib_metadata 8.5.0 hd8ed1ab_0 conda-forge Cached
+ lazy-loader 0.4 pyhd8ed1ab_1 conda-forge Cached
+ napari-plugin-engine 0.2.0 pyhd8ed1ab_2 conda-forge Cached
+ annotated-types 0.7.0 pyhd8ed1ab_0 conda-forge Cached
+ flexparser 0.3.1 pyhd8ed1ab_0 conda-forge Cached
+ flexcache 0.3 pyhd8ed1ab_0 conda-forge Cached
+ typer-slim-standard 0.12.5 hd8ed1ab_0 conda-forge Cached
+ ipython 8.18.1 pyh707e725_3 conda-forge Cached
+ lazy_loader 0.4 pyhd8ed1ab_1 conda-forge Cached
+ pint 0.24.3 pyhd8ed1ab_0 conda-forge Cached
+ typer 0.12.5 pyhd8ed1ab_0 conda-forge Cached
+ brotli-python 1.1.0 py39hf88036b_2 conda-forge Cached
+ markupsafe 2.1.5 py39h8cd3c5a_1 conda-forge Cached
+ msgpack-python 1.1.0 py39h74842e3_0 conda-forge Cached
+ kiwisolver 1.4.7 py39h74842e3_0 conda-forge Cached
+ debugpy 1.8.6 py39hf88036b_0 conda-forge Cached
+ tornado 6.4.1 py39h8cd3c5a_1 conda-forge Cached
+ pyzmq 26.2.0 py39h4e4fb57_2 conda-forge Cached
+ rpds-py 0.20.0 py39he612d8f_1 conda-forge Cached
+ wrapt 1.16.0 py39h8cd3c5a_1 conda-forge Cached
+ pyyaml 6.0.2 py39h8cd3c5a_1 conda-forge Cached
+ psutil 6.0.0 py39h8cd3c5a_1 conda-forge Cached
+ pillow 10.4.0 py39h648eaa6_1 conda-forge Cached
+ numpy 1.26.4 py39h474f0d3_0 conda-forge Cached
+ cffi 1.17.1 py39h15c3d72_0 conda-forge Cached
+ cytoolz 0.12.3 py39hd1e30aa_0 conda-forge Cached
+ glib 2.82.1 h2ff4ddf_0 conda-forge Cached
+ sip 6.7.12 py39h3d6467e_0 conda-forge Cached
+ pydantic-core 2.23.4 py39he612d8f_0 conda-forge Cached
+ imagecodecs 2024.6.1 py39hd2cbb1d_4 conda-forge Cached
+ numcodecs 0.12.1 py39h84cc369_1 conda-forge Cached
+ pywavelets 1.6.0 py39hd92a3bb_0 conda-forge Cached
+ vispy 0.14.3 py39h5876728_1 conda-forge Cached
+ scipy 1.13.1 py39haf93ffa_0 conda-forge Cached
+ pandas 2.2.3 py39h3b40f6f_1 conda-forge Cached
+ zstandard 0.23.0 py39h08a7858_1 conda-forge Cached
+ gstreamer 1.24.7 hf3bb09a_0 conda-forge Cached
+ pyqt5-sip 12.12.2 py39h3d6467e_5 conda-forge Cached
+ gst-plugins-base 1.24.7 h0a52356_0 conda-forge Cached
+ qt-main 5.15.8 h3155989_26 conda-forge Cached
+ pyqt 5.15.9 py39h52134e7_5 conda-forge Cached
+ jinja2 3.1.4 pyhd8ed1ab_0 conda-forge Cached
+ jupyter_client 8.6.3 pyhd8ed1ab_0 conda-forge Cached
+ referencing 0.35.1 pyhd8ed1ab_0 conda-forge Cached
+ psygnal 0.11.1 pyhd8ed1ab_0 conda-forge Cached
+ dask-core 2024.8.0 pyhd8ed1ab_0 conda-forge Cached
+ imageio 2.35.1 pyh12aca89_0 conda-forge Cached
+ pydantic 2.9.2 pyhd8ed1ab_0 conda-forge Cached
+ tifffile 2024.6.18 pyhd8ed1ab_0 conda-forge Cached
+ zarr 2.18.2 pyhd8ed1ab_0 conda-forge Cached
+ urllib3 2.2.3 pyhd8ed1ab_0 conda-forge Cached
+ ipykernel 6.29.5 pyh3099207_0 conda-forge Cached
+ jsonschema-specifications 2023.12.1 pyhd8ed1ab_0 conda-forge Cached
+ napari-svg 0.2.0 pyhd8ed1ab_0 conda-forge Cached
+ pydantic-compat 0.1.2 pyhd8ed1ab_0 conda-forge Cached
+ npe2 0.7.7 pyhd8ed1ab_0 conda-forge Cached
+ requests 2.32.3 pyhd8ed1ab_0 conda-forge Cached
+ qtconsole-base 5.6.0 pyha770c72_0 conda-forge Cached
+ jsonschema 4.23.0 pyhd8ed1ab_0 conda-forge Cached
+ app-model 0.2.8 pyhd8ed1ab_0 conda-forge Cached
+ sphinx 7.4.7 pyhd8ed1ab_0 conda-forge Cached
+ sphinxcontrib-applehelp 2.0.0 pyhd8ed1ab_0 conda-forge Cached
+ pyconify 0.1.6 pyhd8ed1ab_0 conda-forge Cached
+ pooch 1.8.2 pyhd8ed1ab_0 conda-forge Cached
+ napari-console 0.0.9 pyh9208f05_0 conda-forge Cached
+ sphinxcontrib-qthelp 2.0.0 pyhd8ed1ab_0 conda-forge Cached
+ superqt 0.6.7 pyh9208f05_0 conda-forge Cached
+ sphinxcontrib-devhelp 2.0.0 pyhd8ed1ab_0 conda-forge Cached
+ magicgui 0.8.3 pyhd8ed1ab_0 conda-forge Cached
+ sphinxcontrib-htmlhelp 2.1.0 pyhd8ed1ab_0 conda-forge Cached
+ sphinxcontrib-serializinghtml 1.1.10 pyhd8ed1ab_0 conda-forge Cached
+ numpydoc 1.8.0 pyhd8ed1ab_0 conda-forge Cached
+ scikit-image 0.24.0 py39h5114956_2 conda-forge Cached
+ napari 0.4.19.post1 pyh9208f05_0 conda-forge Cached
Summary:
Install: 304 packages
Total download: 24MB
──────────────────────────────────────────────────────────────────────────────────────────────
Confirm changes: [Y/n]
python 23.7MB @ 46.2MB/s 0.5s
Downloading and Extracting Packages:
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
To activate this environment, use
$ mamba activate cellseg
To deactivate an active environment, use
$ mamba deactivate
(base) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [207]
└─[$] conda activate cellseg [8:02:24]
(cellseg) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [209]
└─[$] mamba install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia [8:02:33]
Looking for: ['pytorch', 'torchvision', 'torchaudio', 'pytorch-cuda=12.4']
conda-forge/linux-64 Using cache
conda-forge/noarch Using cache
pytorch/noarch No change
nvidia/linux-64 No change
nvidia/noarch No change
pytorch/linux-64 No change
Pinned packages:
- python 3.9.*
Transaction
Prefix: /home/yul4024/miniforge3/envs/cellseg
Updating specs:
- pytorch
- torchvision
- torchaudio
- pytorch-cuda=12.4
- ca-certificates
- certifi
- openssl
Package Version Build Channel Size
───────────────────────────────────────────────────────────────────────────────────────────────────────────
Install:
───────────────────────────────────────────────────────────────────────────────────────────────────────────
+ pytorch-mutex 1.0 cuda pytorch Cached
+ llvm-openmp 15.0.7 h0cdce71_0 conda-forge Cached
+ libvpx 1.14.1 hac33072_0 conda-forge Cached
+ openh264 2.4.1 h59595ed_0 conda-forge Cached
+ gmp 6.3.0 hac33072_2 conda-forge Cached
+ x264 1!164.3095 h166bdaf_2 conda-forge Cached
+ x265 3.5 h924138e_3 conda-forge Cached
+ pugixml 1.14 h59595ed_0 conda-forge Cached
+ wayland 1.23.1 h3e06ad9_0 conda-forge Cached
+ libhwloc 2.11.1 default_hecaa2ac_1000 conda-forge Cached
+ xorg-libxfixes 6.0.1 hb9d3cd8_0 conda-forge Cached
+ libabseil 20240722.0 cxx17_h5888daf_1 conda-forge Cached
+ ocl-icd 2.3.2 hd590300_1 conda-forge Cached
+ fribidi 1.0.10 h36c2ea0_0 conda-forge Cached
+ mpfr 4.2.1 h90cbb55_3 conda-forge Cached
+ tbb 2021.13.0 h84d6215_0 conda-forge Cached
+ libprotobuf 5.27.5 h5b01275_2 conda-forge Cached
+ libass 0.17.3 h1dc1e6a_0 conda-forge Cached
+ mpc 1.3.1 h24ddda3_1 conda-forge Cached
+ libopenvino 2024.4.0 hac27bb2_1 conda-forge Cached
+ mkl 2022.2.1 h84fe81f_16997 conda-forge Cached
+ gmpy2 2.1.5 py39h7196dd7_2 conda-forge Cached
+ libopenvino-auto-batch-plugin 2024.4.0 h4d9b6c2_1 conda-forge Cached
+ libopenvino-auto-plugin 2024.4.0 h4d9b6c2_1 conda-forge Cached
+ libopenvino-hetero-plugin 2024.4.0 h3f63f65_1 conda-forge Cached
+ libopenvino-intel-cpu-plugin 2024.4.0 hac27bb2_1 conda-forge Cached
+ libopenvino-intel-gpu-plugin 2024.4.0 hac27bb2_1 conda-forge Cached
+ libopenvino-intel-npu-plugin 2024.4.0 hac27bb2_1 conda-forge Cached
+ libopenvino-ir-frontend 2024.4.0 h3f63f65_1 conda-forge Cached
+ libopenvino-onnx-frontend 2024.4.0 he882d9a_1 conda-forge Cached
+ libopenvino-paddle-frontend 2024.4.0 he882d9a_1 conda-forge Cached
+ libopenvino-pytorch-frontend 2024.4.0 h5888daf_1 conda-forge Cached
+ libopenvino-tensorflow-frontend 2024.4.0 h9718a47_1 conda-forge Cached
+ libopenvino-tensorflow-lite-frontend 2024.4.0 h5888daf_1 conda-forge Cached
+ blas 1.0 mkl conda-forge Cached
+ filelock 3.16.1 pyhd8ed1ab_0 conda-forge Cached
+ mpmath 1.3.0 pyhd8ed1ab_0 conda-forge Cached
+ wayland-protocols 1.37 hd8ed1ab_0 conda-forge Cached
+ sympy 1.13.3 pypyh2585a3b_103 conda-forge Cached
+ cuda-cudart 12.4.127 0 nvidia Cached
+ cuda-cupti 12.4.127 0 nvidia Cached
+ cuda-nvrtc 12.4.127 0 nvidia Cached
+ cuda-nvtx 12.4.127 0 nvidia Cached
+ libcublas 12.4.2.65 0 nvidia Cached
+ libcufft 11.2.0.44 0 nvidia Cached
+ libcusolver 11.6.0.99 0 nvidia Cached
+ libcusparse 12.3.0.142 0 nvidia Cached
+ libnpp 12.2.5.2 0 nvidia Cached
+ libnvjitlink 12.4.99 0 nvidia Cached
+ libnvjpeg 12.3.1.89 0 nvidia Cached
+ cuda-version 12.6 3 nvidia Cached
+ libva 2.22.0 h8a09558_1 conda-forge Cached
+ ffmpeg 7.0.2 gpl_h8657690_705 conda-forge Cached
+ libnvfatbin 12.6.68 0 nvidia Cached
+ libcurand 10.3.7.68 0 nvidia Cached
+ libcufile 1.11.1.6 0 nvidia Cached
+ cuda-opencl 12.6.68 0 nvidia Cached
+ cuda-libraries 12.4.0 0 nvidia Cached
+ cuda-runtime 12.4.0 0 nvidia Cached
+ pytorch-cuda 12.4 hc786d27_6 pytorch Cached
+ pytorch 2.4.0 py3.9_cuda12.4_cudnn9.1.0_0 pytorch 1GB
+ torchtriton 3.0.0 py39 pytorch 245MB
+ torchaudio 2.4.0 py39_cu124 pytorch 7MB
+ torchvision 0.19.0 py39_cu124 pytorch 8MB
Change:
───────────────────────────────────────────────────────────────────────────────────────────────────────────
- _openmp_mutex 4.5 2_gnu conda-forge Cached
+ _openmp_mutex 4.5 2_kmp_llvm conda-forge Cached
- libblas 3.9.0 24_linux64_openblas conda-forge Cached
+ libblas 3.9.0 16_linux64_mkl conda-forge Cached
- libcblas 3.9.0 24_linux64_openblas conda-forge Cached
+ libcblas 3.9.0 16_linux64_mkl conda-forge Cached
- liblapack 3.9.0 24_linux64_openblas conda-forge Cached
+ liblapack 3.9.0 16_linux64_mkl conda-forge Cached
Summary:
Install: 64 packages
Change: 4 packages
Total download: 2GB
───────────────────────────────────────────────────────────────────────────────────────────────────────────
Confirm changes: [Y/n]
torchvision 8.3MB @ 50.2MB/s 0.2s
torchaudio 6.6MB @ 29.7MB/s 0.2s
torchtriton 244.9MB @ 42.3MB/s 5.8s
pytorch 1.4GB @ 91.8MB/s 15.7s
Downloading and Extracting Packages:
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(cellseg) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [213]
└─[$] pip install napari-cellseg3d [8:07:20]
Collecting napari-cellseg3d
Using cached napari_cellseg3d-0.2.0-py3-none-any.whl.metadata (10 kB)
(omitted due to github comment length limit)
Installing collected packages: napari-cellseg3d
Successfully installed napari-cellseg3d-0.2.0
Thanks in advance.
I installed CellSeg via pip install -e ., edited the erroneous line
volume = np.reshape(volume, newshape=(1, *volume.shape))
to
volume = np.reshape(volume, (1, *volume.shape))
which should be equivalent to the original code since newshape is also a positional argument. And now I am getting a different error trying to run the inference function:
(cellseg) ┌─[yul4024@wulab-precision1] - [~/Documents/downsample_stack] - [236]
└─[$] napari cellseg_test_stack [8:28:25]
/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/pytools/persistent_dict.py:63: RecommendedHashNotFoundWarning: Unable to import recommended hash 'siphash24.siphash13', falling back to 'hashlib.sha256'. Run 'python3 -m pip install siphash24' to install the recommended hash.!
08:28:34 INFO pydensecrf not installed, CRF post-processing will not be available. Please install by running : pip install pydensecrf@git+https://github.com/lucasb-eyer/pydensecrf.git#egg=masterThis is not a hard requirement, you do not need it to install it unless you want to use the CRF post-processing step.
08:28:34 INFO wandb not installed, wandb config will not be taken into account
08:28:36 INFO Starting...
08:28:36 INFO ********************
08:28:36 INFO Worker started at 08:28:36
08:28:36 INFO Saving results to : /home/yul4024/cellseg3d/inference
08:28:36 INFO Worker is running...
08:28:36 INFO MODEL DIMS : 64
08:28:36 INFO Model name : SegResNet
08:28:36 INFO Instantiating model...
08:28:36 INFO ********************
08:28:36 INFO Weight file SegResNet_latest.pth already exists, skipping download
08:28:36 INFO Loading weights...
Numpy version: 1.26.4
08:28:36 INFO Weights status : <All keys matched successfully>
Numpy source: /home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/numpy/__init__.py
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 1024.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 2048.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 4096.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 8192.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 1024.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 2048.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 4096.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 8192.
08:28:36 WARNING Warning : a very large dimension for automatic padding has been computed.
Ensure your images are of an appropriate size and/or that you have enough memory.The padding value is currently 16384.
2024-10-01 08:28:36,724 - INFO - Apply pending transforms - lazy: False, pending: 0, upcoming 'QuantileNormalization', transform is not lazy
=== Transform input info -- QuantileNormalization ===
08:28:36 ERROR
=== Transform input info -- QuantileNormalization ===
Data statistics:
Type: <class 'dask.array.core.Array'> float32
Value: dask.array<reshape, shape=(1, 7489, 8804, 12), dtype=float32, chunksize=(1, 7489, 8804, 1), chunktype=numpy.ndarray>
08:28:36 INFO Data statistics:
Type: <class 'dask.array.core.Array'> float32
Value: dask.array<reshape, shape=(1, 7489, 8804, 12), dtype=float32, chunksize=(1, 7489, 8804, 1), chunktype=numpy.ndarray>
08:28:36 INFO Done
08:28:36 ERROR applying transform <napari_cellseg3d.code_models.workers_utils.QuantileNormalization object at 0x714353fb7790>
Traceback (most recent call last):
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/monai/transforms/transform.py", line 141, in apply_transform
return _apply_transform(transform, data, unpack_items, lazy, overrides, log_stats)
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/monai/transforms/transform.py", line 98, in _apply_transform
return transform(data, lazy=lazy) if isinstance(transform, LazyTrait) else transform(data)
File "/home/yul4024/Downloads/CellSeg3D/napari_cellseg3d/code_models/workers_utils.py", line 240, in __call__
return utils.quantile_normalization(img)
File "/home/yul4024/Downloads/CellSeg3D/napari_cellseg3d/utils.py", line 599, in quantile_normalization
raise TypeError("image needs to be torch tensor or numpy array")
TypeError: image needs to be torch tensor or numpy array
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/yul4024/Downloads/CellSeg3D/napari_cellseg3d/code_models/worker_inference.py", line 973, in inference
input_image = self.load_layer()
File "/home/yul4024/Downloads/CellSeg3D/napari_cellseg3d/code_models/worker_inference.py", line 321, in load_layer
input_image = load_transforms(volume)
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/monai/transforms/compose.py", line 335, in __call__
result = execute_compose(
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/monai/transforms/compose.py", line 111, in execute_compose
data = apply_transform(
File "/home/yul4024/miniforge3/envs/cellseg/lib/python3.9/site-packages/monai/transforms/transform.py", line 171, in apply_transform
raise RuntimeError(f"applying transform {transform}") from e
RuntimeError: applying transform <napari_cellseg3d.code_models.workers_utils.QuantileNormalization object at 0x714353fb7790>
08:28:36 INFO --------------------
08:28:36 INFO Parameters summary :
08:28:36 INFO Model is : SegResNet
08:28:36 INFO Window inference is disabled
08:28:36 INFO Dataset loaded on cuda:0 device
08:28:36 INFO --------------------
08:28:36 INFO Loading layer
08:28:36 INFO Checking dimensions...
08:28:36 INFO
Worker finished at 08:28:36
08:28:36 INFO ********************
08:28:36 INFO Emptying cache...
08:28:36 INFO Attempt complete : Cache emptied
Hello @longyuxi,
Thanks for trying the plugin !
To me it seems your issues are due to using dask. While it would be a great addition, I'm afraid we do not currently support it in the plugin.
Converting (a crop) of your volume to a numpy array should fix these; depending on what you're trying to segment you could also downsample your images a bit to reduce the memory requirements.
(Just to be thorough, your first error is due to the dask implementation of reshape not having the "newshape" keyword. It's interesting that it is being re-routed to the dask implementation however. Your second error is simply due to the quantile normalization not accepting dask arrays.)
Let me know if you need any further help !
Best,
Cyril
Hello, since this is a week old I will go ahead and close it. Feel free to reopen if you need further help !